- Pressndarte
- K.K. Aggaraal
- What is software?

Ans. Software is a program, when it is executed the associated functionality must be satisfied.
SIW is a data structure used to manipulate the information.
Sw is a document used to maintain the operational guidelines of the program e,
\therefore SW is a combination of:-
(program + documentation operational procedure) code
analysis, design, system overiew, coding, testing guidelines to naive) users.
SIW is a logical entity rather than physical entity.
Characteristics of the S/w
(i). It is developed or engineered but not manufactured.
(ohs is a logical
entitytains andysis,
design, coding, testing, etc]
cols of man if acturing is a physical entity.) analysis, design, manufacturing, process,testing]

- SJw is a logical component \& haw is a Physical component.
After implementing the design, if we get physical component as $0 / p$, then that process is called manufacturing process,
f if after implemention of design, the o/p we get is a logical component, then process is called development.
(ii) SIW doesn't wear out, but it deteriorate.

A When S/w undergoes deterioration, we have to re-engineer the product.
Note:- Ideal curve When customer requirements Real curve when e suatonstaticequirement
are dynamicner requirements
H / w undergoes wear out, which means at early stage of development the uncovered errors causes the failure rate of product high. This state is called bowing slate. After maintainence of product, the defects are removed from the produce, so failure
rate decreases. Then, the product will be working in the specified levels. This phase is useful life phase. Over a period of time, due to environmental changes(dust, temp, etc.) the product failure rate increases This phase is wear-out phase.
When product undergoes wear-out, replace the component with new component.

Deterioration:-

- S/W undergoes deterioration, which means user requirements are not static, derecte the new requirement changes, the product failure rate increases After
- After maintainencethe defects will be minimized but due to the frequent changes, the product maintainence cost becomes twice or thrice of the development cost. This condition is caved as deteriorates.
- When Sw deteriorates, then, re-engineer the SIn.
(components
Γ in the market)
(iii) Industry moving towards component based develo. pent, but shill s / m is a custom-built.
- Component is an error free cade or reusable code or fully bested code.
- In the -physical component development, the components are diveclly used in the process wo changes (diff. IC's)
- But in the sir development, the comportents arr modified acc to the problem objective.
\qquad

A Sin develop components are divided into 4 types:-

- Off the shelf
- Fully experienced
- Partially experienced
- Nola components
- Off -the Shelf:-
components are extracted from the 30 d party libraries \& used directly in the current project.
- Fully or Partial experienced components are extracted from current organisation library \& used in the profed.
- The new components functionality are developed from the base ling.
Software Applications:
- There are diff application domains that are using the slaw to satisfy the objective within the rum time period.
(i) System Software: -

It is a program used to manage the other program e.g. Compiler, OS, device drivers.
oi) Real time Sis:
This sim satisfies the high level objectives of the real world entities, e.g. weather forecasting, aircraft simulation.
(It there is a latency in user action \& sw readion, then it may cause serious damages.)
(iii) Busies St:

It is used to generate the reports various programming languages are used in this domain, egg. COBOL, OLA TOOLS
(iv) Eng. \& scientific sin:-

It is used to perform the high level computation, egg CAD (CAM, MATLAB, NS2. within limited time.)
(v) Embedded Str:

This sw is stored in the permanent memory of the devices (ROM).
When the device is in the operational state, then the stow is exccuted,so the associated functionality mast be is satisfied.
(vi) Web S(w:-

By using the web sw, we can develop user interface e.g. web services, HT PQetc.
(vii) Artificial Intelligence.

In this domain, symbolic computations are performed rather than numeric computation, e.g. Knowledge representation, image processing, speech recognition, machine leaning.
To perform the symbolic computation, functional programming languages are used, egg. LISP CLIST Processing).
Prolog (Logic Programming), Haskel, etc.

* To satisfy various high-level objectives, there is a need to develop efficient Sin. S/w eng. practices rare required to develop the quality sin.
- Sly Eng g :-
the application of systematic, disciplined \& quantifiable approach to develop, operate of maintain the s / m.

1. Layered Approach
2. Generic Approach

Layered Approach

Layers tudevelol Quality S/W.
(i) The quality layer is a bedrock of the s / h. Quality is defined as confirmation to explicitly stated requirements.
Quality is an indirect measwement, so it depends on defects.

Quality $\propto \frac{1}{\text { defect }}$

- The uncovered error becomes the defect during the operational state of the slw.
(ii) Process layer focus on key process areasisi.e. the product, project, people, process to trace the cost, effort \& schedule.
(There is no measurement related to people.)
\qquad
(iii) Method layer focus on the framework i.e process model to develop the quality s / w.
(iv) Tools layer focus on the automated \& semiautomated tools present in the 4 th generation techniques (focus on 4 th generation language.)
Generic Approach :-
Generic approach comprises of 3 phases of operation
(i) Definition \rightarrow focus on 'what'. [e. क. Wind behaviour
(ii) Development \rightarrow focus on 'how' (iystempered analysis
(iii) Support. systemize analysis
Ni fo gathering
For maintainence (Designing. Cadicy)
purposes (an operational!)
(first maintainence
is corrective maintainence)
Definition:-
This stage focuses on what', ie 'what' info is processed, 'what' functionality or performance is designed \& 'ch at behaviour is expected. 'What' constraints are imposed \& what validation criteria is used
\therefore In this stage requirements antalysis freq. gathering activities are performed.
Tralidation: "Did we build the right system?" The validation process is injected into the early stage of the SSw development to minimize the maintainence effort \& cost.
Verification:- "Did we build the system rightly" verification activity is performed in the testing
\qquad
Stage of the S/W development life cycle.
Development:-
(design)
This stage focuses on voles, i.e how to create the data structure, 'how' to define the interfaces, "how to translate the procedural description' into machine readable for mat of 'how' to define fimplement the test cases.
- In this stage design,eoding f testing activities are performed.

Support:-
After deploying product at the customer place, support stage is required to maintain the product from various side effects.
There are 4 types of support present:-
ci) Correction:- In this support, the uncovered errol are corrected, So corrective maintaimence is required to ever the uncovered errors.
(ii) Adaption This support requires adaptive maintainence to maintain the product due to the plat form changes, eg due to CPU) Men OS upgradation
(iii) Enhancement:- This support is required when the functional requirement changes.
perfective maintainence, isequired to maintain the sld from the functionality changes.
(iv) Preventance : This support uses preventive maintainence to maintain the slew from frequent changes.

The maintainence effort is distributed as follows:-

Software Process

- Process is a framework, there are diff types of the framework (process) models) are used to develop the quality sin

Software ing. institution define one assessment model to assess the S/W organisation .b arsed on their level of process development.
The assessment model is named as CMM (Capability Maturity Model):
This model Consists 5 levels of assessmentici.e.
(i) Level-0: Initial. (No standard model to develop the
(in)Levela : Repeatable cimanagen
(iii) Level? ? - Defined
(iv) Level 3 : Managed
(v) Level-4 :- Optimized
\rightarrow Initial:-
In this level, adhoc procedures are used to develop the $\operatorname{si}, \therefore$ the process becomes chaotic. So success/failure depends on the individual
effort

- Repeatable:-

In this level, management activities are defined based on the previous project knowledge to trace the cost, schedule \& effort of the project, no guarranty to deliver the pred
ut on time in -budget. ut on time f in-budget.
\rightarrow Defined:
In this level, management ing, aet vil lies are defined but not propatariy documented, \therefore in som. for the anticipated situation.
\rightarrow Managed:-
In this level,engg. \& management activities are qualitatively documented \& controlled. Due. to lack of continuous improvement min quality will be assured.
\rightarrow Obtimiced:-
Gain more (profit with min. effort is the objective of the optimized lever. In this level, inovatere tools f techniques are used f contoruously taking the qualitative feedbax form the customers.
Bores Models :-
The classification of the process models are shown below:-

- Conventional Model:-

By using the conventional process model, we can develop the complete operational product.
(i) Waterfall Model:- concelion action berg It contains the following activities: -

System Engmeering :-

(i) Software is a subset of the system, so to develop the stu there is a need of analysing the existing system to finalise the goals of the product.
\rightarrow Analysis:- In this stage, based on the goals of the product, diff requirements are finalised. All off the right requirements are placed in SRS document. SRS document consist goal of the so, functional requirement, non - functional requirements.
\rightarrow Design: - In this stage, 4 activities are performed, :-
a) creating the data structure.
(ii) creating the architecture.
(iii) Defining the interfaces
(iv) Defining the component description.

After converting SRS document info into the procedural description, s/w design document is prepared.

- Code: - In this stage, procedural description is converted into machine readable format. by taking the appropriate language from $4 G L$.
\rightarrow Test: - In this stage, diff. test cases are defined $\&$ implemented to cover the structu. rall \& functional errors.
\rightarrow After deploying the product at customer domain, there is need to maintain the product from side effects

Ote: Waterfall model is suitable when the customer. requirements are clear initially \& customers can wait because in this model, the final product is available after a long schedule. It is not suitable to develop complex systems because it is very diff. to determine all requirements at a time.

Prototype Model
When the customer requirements are not clear, then prototype model is used to finalize the requirement.
The framework of prototype model is to listen to the customer, quick design \& testing mock ib, \& customer evaluation mock up.

- In this model, customer communication is allowed Based on the customer requirements, the developer prepares the SRS document. This SRS is not final. Based on the SRS, the developer develops the prototype product. After demostrating the prot otype product, the developer accepswayg the feedback from the customer. When feedback consists new requirements the SRS document is modified, otherwise the corresponding SRS is finalized.
- After finalizing the SRS document, if we still use the same framework to develop the final product greer is open-end/evolutionary prototype.
- After finalizing SR S, if we use diff. procesS model to develop the product is called throw away prototype mode.

RAD
(i) RAD model is used when the customer recce are more clear \& the project schedule is very short
(ii) To develop the product in short schedule, there is a need of using the modularity concept
Beforetaking the molularity, the deveromint team. is divided into subteam that means efficient developers ak req in the org n.
(iii) Modularity means divide the perfect into smaller modules \& develop them simult. aneously.
(iv) Two factors
\rightarrow Cohesion
\rightarrow Coupling
Cohesion is a major measure of 10 what extent the module is independent from other module
\rightarrow Coupling is a measure of what is extent the module is depend of the other module.
The effective modulating maintains the high concession of low coupling.

\rightarrow With respect to Modularity concept, all the modules are developed simultaneously. After development, there is a need of
\qquad
integration to develops the final system.
The framework of RAD model is

also known as component based dassiclifecycle.

- In the Business modelling the goals of the product are finalized.
- In the data modelling diff data objects are required to satisfy the goal of the project.
- In the process model, the info. flow is created by adding/deleting/modifying the data objects.
- In the application generation, the procedural description of problem statement (ago) is converted inter machine language.
- In Test \& Turnover stage, various test cases are implemented to cover the diff. errors.
Note: The objective of the testing is to prove the system uktio what extent the system At the end of test f turnover, we have an error - free module (components), \therefore integrate alt the components to develop the final product.

Nate: RAD model maintains less effort during testing phase, whereas in waterfall model, testing phase require more effort.
\qquad
07.10 .12

Evolutionary Process Model:
In the evolutionary process Model, the final operat ronal product will be available after some iteration in each iteration, part of the operational product is developed.
There are diff frameworks employed under this category:
(1) Incremental:-

This model uses the classic life cycle framework to develop the product version by version (or part by pare)
(2) Spiral:- Espial Model:-

This framework consists diff stages:-
(1) Customer communication (produces SRS)
(2) Planning (perform estimations)
(3) Risk Analysis
(4) Engineering
(5) Construction \& Release
(6) Customer Evaluation

WIN-WIN Spiral Model

- Release by release customer satisfaction increases.
(i) In this model, customer involvement takes place, zee. continuously taking the qualitative feedback from the customer.
(ii) The entry point in this model to develop the product is custorner comm. n.
(iii) Based on theccustomer req. SRS document is finalised
(iv) During the planning stage, diff parameters of the ssw undergoes estimation, egg. sire, effort, schedule, cost, etc.
(v) In this model risk impact is calculated during the risk analysis stage.
(vi) After taking the Risk impact, it is added to the projed budget to develop the of on-time \& in-budget.
(vii) In the engmearing stage, the design practices are defined (Data Structure, Archielectwre, etc.)
CViii) After converting SRS into procedural description Algol.). use. By using diff tool's \& techniques, they develop the code
(ix) After implementing diff. test cases, the product will be released at customer's site.
(x) After releasing the product, continuous feed back is accepted from the customer to improve the S / W functionality \& reliability.
(xi) in this model, customer satisfaction. f developer satis. faction levels are high. So, it is also called as WIN-WIN Spiral model.
Component Based Development Model:-
- In this framework, reusable components are extracted from the library \& directly used in the project development The framework of the component based developpoent is

- This process model uses the spiral model framework, but during the development diff. Compos. ents are extracted from the libraries. If the library is a $3^{\text {rd }}$ party library, then the extracted components are called off-the-shelf componlents.
- If the library is owon-organisation library, the extracted components are called as fully) partially experienced components.
- We new component functionality are developed from the base lime.
After developing new components, place them in the library, so that they may become reusabe components for the future projects.
Estimation Models:
- To estimate the various attributes of the project. process, product, there are diff. empirical models present in the software engineering.
\therefore Empirical models are derived based on the exp-
- erience of the past projects without proof.
- Based on these models, we can calculate the expected estimation of various attributes w.r.t.
\therefore software.
- The structure of the empirical model is

$$
\begin{aligned}
& E=A+B(e v) C \\
& \text { E: effort (man-months) }\left[\begin{array}{l}
1 \text { man-months:- } \\
1 \text { developer takes } \\
1 \text { month to develas }
\end{array}\right. \\
& \begin{array}{c}
\text { month to devela } \\
\text { or }
\end{array} \\
& \text { A, B \& C: empirically derived constants. } 12-m a n \\
& \text { er:- estimated value (size). } 1 \text { developed } \\
& + \text { dapeloper } 12 \\
& \text { months to }
\end{aligned}
$$

The sequence of S/W at tributes estimation is:-

Size Estimation:-

- The size of the \sin can be estimated based on the SRS document.
- The size of the sw can be measured in 2 ways:-
\rightarrow Direct measurement ($\mathrm{L} O \mathrm{C}$)
\rightarrow Indirect " (Function Point Analysis):
LOC Estimation (Lines Of Code) :-
To calculate the expected size of sw in terms of LOC, there is a meed of dividing the programming Skill levels in 3 types:
(i) experienced \rightarrow develops Optimistic code (Sobs) efficient
(ii) Average \rightarrow develops most likely code (sm)
(iii) Below Average \rightarrow develops pessimistic code (Shes).

After taking above skill levels, we can use the following formula r to calculate the expected size of s/w:-

$$
S=\frac{S_{\text {opt }}+4 S_{m}+\text { Shes }}{6}
$$

Q1. Sf development Orin is planning to develop the s lw for geometric applications. During the development process, they have estimate r o the code as 4600 optimistic 6900 most like eq, 86000 pessimistic, what is the expected se of the slow?
Ans. $S=\frac{4600+4 \times 690018600}{6}-8880$ LOO
(D) if the above sw is expeded 10 develop within 12 -man-months effort, what is the productivity:
Ans 1 developer will win 12 months to develop 6800 Limes of gal
Productivity 6 . hes of code developed in one month.

$$
\therefore \text { prod }=\frac{6609}{\frac{17}{2}} 566.67=566.67
$$

(c) if 12 mean months effort project is developed in -months duration, what is the manpower.
Ans.

$$
\begin{aligned}
& 1 \times 12=n \times 5 \\
& n=3
\end{aligned}
$$

3 developers are req.
Q2 A company needs to develop the strategy for developing the S/w in DSP, in which 2 diff. programming languages are planned. The LOC developed using lang. 2 is estimated
\qquad
to be twice the LOC developed using lang. 1. The product will have to be maintained for 5 years. Various parameters of the product is given below:-

LI
man-years $L O C=x$
rea-yor $\quad 10,000$
development
dev.costy \quad Rs. $10,00,000$
man-year $\quad[$ total $\rightarrow x \times 10$ lakh]
cost of of
mantence Rs. $1,00,000$
meryeare total $\rightarrow 5$ lakh]

Maintainence 5 years

$$
\begin{aligned}
& \operatorname{L2} \\
& \frac{L O C}{10,000}=2 x \\
& \text { Rs. 7,50,000 } \\
& {[\text { total } \rightarrow x \times 15 \mathrm{lakh}]} \\
& \text { RS } 50,000 \\
& {[\text { total } \rightarrow 2.5 \text { lakh] }}
\end{aligned}
$$

5 years

Total cost of the product includes cost of the development \& maintainence, what is LOC for $L 1$ for which the total cost of project using $L 1=$ total cost of project using $L 2$
ins. $x \times 10$ lakh +5 lakh $=15$ lakh $\times x+25$ lakh

$$
\begin{aligned}
\text { x. } & 2.51 a k h=5 \text { lakh } \times x \\
x & =\frac{1}{2} \\
\angle O C & =x \times 10,000 \\
& =\frac{15,000}{}[\text { for } 1 \text { 1] }]
\end{aligned}
$$

now $\frac{1}{2}$ man पexcorder effort is req. [for 4] (means 6 months req. to develop 5,000 LOO)

$$
\text { Prod }=\frac{5,000}{6} \text { [i.e in LOC developed } \text { in month }
$$

Function - Point Analysis:
(i) FP Analysis is an indirect measurement, wed to measure the size of the s / w.
To calculate the expected size of the sow in terms of FP, there is a need of of Der parameters.
(ii) Five functional parameters \& 14 non fund anal parameters are req. to (apiculate the FP of the s/w.

Functional parameters pere directly involved in the project:-
(1) no. of ils: it indicates no of inflows to the system:
(2) no of op's it indicates no. of outflows from the system.
(3) no of enquiries - it indicate no. of cony to get the quick info. from the system
(4) no. of files: it indicates the logical connections within the system.
(5) no. Of external inter faces: it indicates no. Of the other modules interfaced with our system.

－The five parameter values can be calculated by using：－
（i）

$$
S=S_{0 p t}+4 \times S_{m}+\text { Shes }
$$

牛atipk Sops $S_{m}{ }^{6}$ Shes $S=\frac{S_{0 p t}+4 \times S_{m}+S_{\text {pps }}}{6}$
\＃of ip：
$\#$ of op：
\＃enquiries：
\＃ 10 of files：
\＃of external：
interface
－To calculate the count value of the 5 functional parameters，there is a need of weighing factor． weighing factor is derived empirically based on the level of complexity of the project，ie．

Weighing factor：－
（j）
$\left.\begin{array}{ccc}\begin{array}{c}\text { Weighing factor－} \\ \text { Simple } \\ \text {（1）}\end{array} & \text { average } & \text { complex } \\ \hline 3 & (2) & (3) \\ 4 & 4 & 6 \\ 3 & 5 & 7 \\ 7 & 4 & 6 \\ 5 & 10 & 15 \\ & 7 & 10\end{array}\right\} \stackrel{W}{=}$

Count $=\sum \omega_{i j} \times z_{j}$
i：－type of the ills parameter
j：－level of complexity
h：－weighing factor．
z ：－value of the parameter．
＊Non－functional requirements are indirectly invaded in the project there involvement in the project
\qquad
\qquad
Irivolvernent Impact

If no influence	0
If Incident	1
If moderate	2
If average	3
If Significant	4
If essential	5

VAF (value adjustment factor) $=$

$$
0.65+0.01 \times \sum_{i=1}^{14} F_{i}
$$

now,

$$
+60
$$

$$
F P=\text { count value } \times V A F
$$

Q. Consider the sw project with no Cweighting factor) of isp's, or/ssenquiries, files \& external interfaces as $30(4), 25(5), 20(4), 10(10), 5(7)$.
Assume all complexity AF are constant te. 3
What is the $E P$ for the project
Ans.

$$
\begin{aligned}
\text { VAC } & =0.65+0.01 \times 3 \times 14 \\
= & 1.07 \\
F P & =460 \times 1.07 \\
& =492.2
\end{aligned}
$$

(b) If the above project requires 2 -man years effort, what is the productivity.

$$
\text { Ans. } \frac{442(2}{24} 1 \text { man }- \text { month }-\frac{492.2}{24}(\text { prod. })
$$

$$
\begin{aligned}
& \text { VAt }-0.65+0.01 \times 3 \times 14
\end{aligned}
$$

Q If in a sw project no. of ip's, no, of op's, enquiries, files \& external interfaces are $30,60,20,10 \& 5$ respec, with complexity \& weighing factors are arg, what is the prod. of the project if the effort is 100 man months
Ans.

$$
\begin{aligned}
& \text { Count }=120+300+80+100+35 \\
& \begin{aligned}
\text { VAF } & =035 \\
& =1.05+0.01 \times 3 \times 14 \\
& =6 P=
\end{aligned} \\
&=635 \times 1.07 \\
& 679.45
\end{aligned}
$$

$$
\text { prod. }=\frac{679.45}{100}=6.7945(\text { FP's developed in 1-month). }
$$

Q. A company has to develop sw for an application. The sire of the project can be estimated by using the IP analysis with the following values:-

with complexity \& weighing factors as avg, what is the productivity of project, if effort is 2 man-years?
Ans.

$$
\begin{aligned}
\text { Count } & =4 \times 24.33+5 \times 15.67+22 \times 4+41.67+7 \times 2.167 \\
& =97.32+78.35+88+641.67+15.169 \\
& =320.509 \\
V A F & =1.07 \\
F P & =342.94 \\
\text { prod } & =\frac{342.94}{24}=14.28 \text { person -month }
\end{aligned}
$$

Halstead size estimation:-
1 To measure the various attributes of the program, Halstead defined diff formula based on the token mechanism.
2. In the LOC count, all the comments \& blanks f hash directives are included so it doesn't gives the accurate estimation, : token mechanism is used to estimate the size of the sw. In the token mechanism each statement is decomposed into aperands \& operators. Variables \& constants are treated as operands.
3. Function calls \& different unary operators \& binary operators are treated as operators\%
4. The reserved wards the return, break, continue, etc. are considered as operators.
5. Diff control structures like if, switch, while, do while areconsidered as operators.
6. The pair apmbols ie $\},(),[]$, special symbols f termination operators are considered as operators.
7. Gotolabel, in this Got \rightarrow operator label \rightarrow operand.
8 In the array accessing array-name [index], array-name if inder obertan'd $[3 \rightarrow$ operator
9. Comments \& function declarations \& fash directives are excused.
eg. $a=a+(b * c)$;
operand operator

a	$=$
b	+
c	c_{1}^{*}
i	\vdots

after decomposition the statement into token, these database is required.
The Database consists of following:-

- After making the database, we can calculate diff attributes of the program.
- the vocabulary of the program: $-n=n_{1}+n_{2}$
- the length of the program $:-N=N_{1}+1 N_{2}$
- the volume of $\quad \therefore-V=N * \log _{2} n$
: the estimator level of the program:- $L=\frac{2 n_{2}}{n_{1} \cdot N_{2}}$
- diff of programis:- $D=\frac{1}{L}$
- effort of program:- $E=\frac{V}{L}$ is in the range of $0 \ldots 1$)
Coot in if $L=0$, then
man-months) program is optimistic
- the estimated length of if $L=1$, then program:- $\hat{A}=n_{1} \log _{2} n_{1}+n_{2} \log _{2} n_{2}$ the site of the program is low A Optimistic code is maintained.
- the programming time is calculated

Q1. Consider the following program \& calculate diff. attributes of the program.
int sort (int $x[J$, int n)
Sint i, j, save, iml $;$
if $(n<2)$ retwen 1;
for ($i=2 ; i c=n ;(t+t)$

$$
\begin{aligned}
& \operatorname{sim} 1=i-1 j \\
& \text { for }(j=1 ; j \leq=i m 1 ; j+t) \\
& \text { if }(x[i] \leq x[j]) \\
& \text { \{sare }=x[i] j \\
& x[i]=x[j] ; \\
& \xi^{x[j]=\text { save }}
\end{aligned}
$$

retume 0 ;
\}
operators occurences operands occurences

int	4	x	7
[]	7	n	3.
c	5	i	8
$\}$	3	j	7
$;$	11	Sare	3
if	2	im1	3
i	42	2	2
return	2	1	3
for	2	0	1
$?$	4	Sort	1
$=$	26	$\underline{10}$	$\underline{37}$
$<=$	2	-	
++	2		
$\frac{1}{14}$	$\frac{1}{43}$		

(n) vocabulary $=24\left(n_{1}+n_{2}\right)$.
(N) length $=91\left(N_{1}+N_{2}\right)$

$$
\begin{aligned}
\hat{N} & =14 \log _{2} 14+10 \times \log _{2} 10 \\
V & \left.=91 \times \prod \log _{2} 24\right] \\
& =91 \times 5 \text { bits } \\
L & =\frac{4 \times 5 \text { its }}{2 \times n_{2}} \\
n_{1} \cdot N_{2} & \frac{2 \times 10}{14 \times 38}=\frac{20}{14 \times 38}=0.037 \\
D & =\frac{1}{L}=26.6 \\
E & =\frac{V}{L}=\frac{455}{0.037} \times 2604 \times 18410312,297 \\
T & =683.16 \text { (when } B=18 \text {). }
\end{aligned}
$$

Effort Estimation :-

- Based on the size of the S / W, we can estimate the effort required to develop the s / w. Diff. empirical models ore used to estimate the effort. The structure of effort is:-

$$
E=A+B(e v) C
$$

$A, B \& C$:- empirical constants
ev:-estimatid value size (KLOC/KDSI/FP)
A (er will accept line of code in KLOC)
There are 3 empirical models used to estimate the effort: -

- SEL (S/w Engineering Lab)
- W-F (Walstonald-Felix) [developed by IBM]
- COCOMO (cost Constructive Model) \rightarrow Boehm's

SE:-
In this model, the effort $\&$ duration, both the para meters are calculated as

$$
\begin{aligned}
& E=1.4(K L O C)^{0.93} \text { as } \\
& D=4.6(K L O C)^{0.26} \text { monthons months }[A=0]
\end{aligned}
$$

W-F Model:-
In this model, the effort \& duration req. to develop the S / W is calculated as

$$
\begin{aligned}
& \text { lop the } S / W \text { is } \\
& E=5 \cdot 2(K L O C)^{0.9)} \\
& D=4 \cdot 1(K L O C)^{0.36} \quad[A=0]
\end{aligned}
$$

Q. S/w development expected to have 8 man years of the effort. Calculate LOC Duration Productivy \& avg manning by using SEL \& W-F models
Ans SEL:- $\quad 96=1.4(K L O C)^{0.93}$

$$
\begin{aligned}
& 98.57=(K L O C)^{0.93} \\
& 94.26=K L O C \\
& \therefore \angle O C=94.260
\end{aligned}
$$

$$
D=4.6 \times(9426)^{0.26}
$$

$$
=210015 \text { months }
$$

Prod $=\frac{96}{26} 5 \frac{96}{15}\left(\frac{10 c}{\mathrm{E}}\right) \frac{94.26}{96}=0.9819 \mathrm{KLOC} / \mathrm{month}$
Avg. Manning $=\frac{E}{D}=\frac{96 \text { man -month }}{15}=7$ developers are
req to develop p she of
8-man months
into 15 months)
\qquad
COCOMO-MODEL :-

- Cocomo model was designed by the Boner, acc. to Boner's analysis the projects are classified into 3 types, ie.
\rightarrow Simple
\rightarrow Average
\rightarrow Complex
Based on the level of complexity, diff empirical constants are maintained in 3 diff modes:-
(1) Organic model($2-50 \mathrm{kLOC})$
${ }_{12}$. simple

3. smimior familiar App Domain

4 Experienced developer
5. Deadlines are mot tight
(2) Semi-Detached: $1.50-300 \mathrm{LLOC}$
2. Medium
3. Deadlines are a iso medium.
(3) Embedded-Mode: 1.7300 KLOC
2. complex
3. Deadlines are very tight.

Cocomo model is divided into 2 types: -

1. Basic Cocomo.
2. Intermediate cocomo

Basic cocomo is used for quick $\&$ rough estimation, \therefore in this model accuracy is not possible. The structure of the effort a a ration estimation is

\[

\]

Q. Suppose that a project was estimated to be 400 KLOC , then calculate the effort \& duration by using three modes
Ans. Organic:-

$$
\begin{aligned}
& E=2.4(400)^{1.05}=1295.31 \text { man-manths } \\
& D=2.5\left(295.311^{0.38}=38.07\right. \text { months } \\
& \$ 5 \mathrm{Dev}
\end{aligned}
$$

Semi-Detatched :-

$$
\begin{gathered}
E=3(400)^{1.12}=2462.7 \text { man-months } \\
D=2.5 \times(2462.7)^{0.35}=38.45 \text { months } \\
65 \mathrm{Dev}
\end{gathered}
$$

Embedded

$$
\begin{gathered}
E=3.6 \times(400)^{1.2}=47.72 .81 \text { man-months } \\
D=2.5 \times\left(472.811^{0.32}=37.6\right. \text { months } \\
E=128 \mathrm{Dev}
\end{gathered}
$$

Note: - In the above SIW development, the effort req. to develop the s/w in the embedded made is 4 times effort req. in organic mode \& 2 times in n semidetached mode, but the duration of the 3 modes ar is approx. equal.

There is a huge difference in the manpower requirement, \therefore to develop the slew on-time \& in-budget, there is a need of mode selection ie. embedded mode.
Q. A company needs to develop DSP Slw for one of its necuest invention. The S / ω is expected to have $40,000 \mathrm{LOC}$. The company needs to
determine the effort in person-months needed to develop the slow using basic cocomo model. The muttiplicat ave factor for this model is 2.8 , while exponentiation factor is calculated as 1.2 , what is estimate de effort in persons-month.
Ans.

$$
\begin{aligned}
E & =2.8 \times(40) \cdot 2 \\
& =234.25 \text { person-months. }
\end{aligned}
$$

Intermediate Cocomo Model:-

- In this model, 15 predictors are introduced as cost drivers to calculate the accurate effort \& duration.
- These 15 cost-drivers are grouped into 4 types:-
(1) Product attributes
(2) Project
(3) Personal
(4) Computer

The cost drivers involvement is rated as:-
$\left.\begin{array}{l}\text { Low } \\ \text { very low }\end{array}\right\}<1$
Nominal $=1$

$$
\left.\begin{array}{l}
\text { High } \\
\text { Very High } \\
\text { Extra High }
\end{array}\right\}>1
$$

* The cost drivers ratings are never zero, because effort adjustment factor is a multiplication factor of 15 cost-drivers.
- The structure of effort f duration estimation is

$$
\begin{aligned}
& E=C 1 \times(K L O \operatorname{cor} F P)^{P_{1}} * E A F\left[E A F=\prod_{i=1}^{15}\right. \text { (cost driver) } \\
& D=C_{2}(E)^{P_{2}}
\end{aligned}
$$

Q. Consider a project that consists 5 modules with the estimated sizes as:$4 k, 2 k, 1 k, 2 k$ \& $3 k$. Overall cost \& schedule estimate based. on the following cost drivers impact : $1.15,1.15,0.86,1.07$ \& rest others are 1. What is the expected effort when the multiplicative factor 3.2 \& exponentiation factor is 1.05 .
Ans.

$$
\begin{aligned}
E A F & =101821.21 \\
E & =3.2 \times(12)^{1.05} \times 0.7821 .21 \\
& =34.34 \text { man }+ \text { months. }
\end{aligned}
$$

$$
=52.61 \text { man months }
$$

Quality-Estimation

- Quality is defined as confirmance to the explicitly stated requirements.
- Quality is an indirect measurement, it depends on the defects. Defect is an uncovered error after careful evaluation of the project.
- In the quality estimation we can calculate defect Epfi density 4 defect removal efficiminy.
- Defect Density $=\frac{\text { no. of defects }}{\text { opportunities for }} x$ time frame (rate) opportunities for
Cor example when product is in $0 p^{n}$), when
it is in op n for

$$
\begin{aligned}
& D R E=\frac{E}{E+D} \cdot\left[\begin{array}{r}
\text { Errors:- } \begin{array}{l}
\text { (total no of errors.) } \\
D:-D e f e c t s \\
\text { (subset of errors, } \\
\text { also af led }
\end{array} \\
\text { uncovered errors) }
\end{array}\right. \\
& \text { The quality attributes }
\end{aligned}
$$

- The quality attributes are divided into diff. types based on the user pt of
\qquad
View \& developer point of view.)

User-perspective:-

1. Availability

2 Efficiency
3. Flexibility

4 Integrity
5. Interoperability
6. Reliability
7. Robustness
8. Usability

Developers perspective

1. Maintainability
2. Portability
3. Testability
4. Reusability:

- In the software ing, the time spent f effort req. pr. after the release is very significant keep ting st ω on assumes $40-70 \%$ of cost of the entire life cycle.
- To minimize the maintainence effort, invest more effort in the early stage of the sw life cycle.
- To calculate the maintainence effort, Bohem introduceed an estimation model.
(i) ACT (Annual Change
(ii) AME (Annual Maintainence Effort)
- ACT means the no. of source instr ar that undergoes Change during a year through adding the inst n / deleting the inst $n /$ modifying the instr

$$
A C T=\frac{K L O C_{\text {added }}+K L O C_{\text {deleted }}}{K L O C_{\text {Total }}}
$$

- AME is calculated as :-

$$
A M E=A C T * S D E
$$

SDE:-S/w development effort.

Q1. ACT for a sw system is 15% per year. The development effort is 600 -man months. If the life-time of the project is 10 years, what is the total effort of the project.
Ans. In maintainence phase:-

$$
\begin{aligned}
A C T & =0.15 \\
A M E & =0.15 \times 600 \\
& =90 \text { man-months (for } 1 \text { year) }
\end{aligned}
$$

for 10 years $=900$ man -months .

$$
\text { now, total effort } \begin{aligned}
t & =600+900 \\
& =1500 \text { man -months. }
\end{aligned}
$$

\qquad
02.12 .12
\qquad
Functional Testing
(1) In this testing, external behaviour is taken into the account to cover the functional errors
(2) In this regard, diff test cares are prepared based on the ip \& op domain
(3) The test case development process is

Test Case Development :-
Test Case 10
Test-case 1
Test-case 2
eng.
input
Test case 10
Test case 15
Test -case 2
Test -case 3

* (1) The developed test cases arc implemented in the system to cover various functional errors
(2) The implerrentation process is

Test Case ID Test Data Test Result

- Test Case 1 1 (mys) $\overrightarrow{\text { actual }} \overrightarrow{\text { (Actual Op is compared win }}$ expected ops Jan Jan CMP Jan Success
- Test case $2 \rightarrow$ sees) Tactual alp June cM Invalid ib $4 F$ failure. Reported to the development team
- Tesi.case4
 invalid if CMP invalid ils \longrightarrow success

During the test case implementation, the actvial of of the system is compared with the expected off. When both are same, then the test case is successful otherwise lest natl is failure
The failed test cases are reported Bock to the development team to modify the program
In the black box testing, diff test plans are used to cover the function gal errors:
(i) equivalence partitioning
(ii) boundary value analyses
(iii) robust ness test
(iv) comparison test

Equivalence partitioning:-
In this testing, ill domain \& ole domain is divided into equal ports known as classes.
The cigeses are claffied into.

- rare. Class

Invalid class not lower limit.

- Invalid class wot upper limit

Acc to the above example scenario, ils dorain is divided into the following classes:

- class $\{1$ to 12$\}$
- class $\{<1\}$
- class $\{>12\}$

The various test cases are prepared based on the isp classes, ie test case 1 , $\{1$ to 12$\}$, \{Jan to Dec\} Lest-case2, $\{<1\},\{$ movalid ill? test-case $3,\{>12\},\{$ invalid $i / p\}$

In the test case implementation, test the system with anyone of the ip of the class, if the test case is successful with the ip, then no need to sos the system with other possible i/ps of the same class Imp ${ }^{n}$:
Test-Cas 1
$\xrightarrow[\rightarrow \text { Test Data }]{\substack{\text { Sues) June }}}$

The advantage of equivalence partitioning testing is that no. of test cases will be minimized.

* When the valid ip pox(class) size is large, then to get the efficient lest result there is a need of dividing the class into valid subclasses.
Boundary Value Analysis
- SIm kesexperts indentified that mast of the errors occurs at boundary levels rather than center point of the ip domain. \therefore to cover more errors at boundary levels, boundary value analysis is done
- In this testing, various test cases are prepared as follows
Lower limit, Just above the lower limit, center, Just below the upper limit \& upper limit
suppose that variable x is bounded blew $a \& b$ ae.

$$
a \leq x \leq 1 \quad x-[a, 17
$$

to test variable x, the following test cases are req:-

$$
a, a+1, \frac{a+b}{2}, b-1, b
$$

Program contain 2 variables x f y,both are accepting isp inthe range of $[100,390\}$ The various test cases req to test re y variables are as follows:-
$[x, 200]$. To teas as, keep y in the cen tue. keeps que other testis

Symbolic repocentation

Note: When the program contain n variables then the boundary value an alysis is yeilds " $4 n+1$ " test cases.
\qquad
\qquad
Robust ness Testing
It is an expansion of boundary value anaysis, it is used to conver more errors at the boundaries rather than center point by conducting the different test case implementation.

- Robustness test case development process is.

Just below the lower limit, lower limit, Just aboutethe lower limit, center, just below the upper limit, upper limit, \& just above the upper imit.

- Suppose that variable ' x ' is bounded b/w a \& b values, i.e. $a \leq x \leq b$,
the various lest cases req tallest the variable x is $a-1, a, a+1, \frac{a+b}{2}, b-1, b, b+1$
eg. Prog. contain x fy $-[100,300]$
Test x variable : $[x, 200$]

$$
(300,200),(301,200),(101,200),(200,200),(299,800),
$$

Test y variable $[200, y]$

$$
\begin{array}{ll}
(200,99),(200,100),(200,101),(200,200),(200,299), \\
(200,300),(200,301) & \text { not taken } \\
& \text { Has arequady } \\
& \text { taken while } \\
& \text { testing R }
\end{array}
$$

Total Test cases: $6 n+1$

\# When the prog. contain ' n ' variables, then the robustness test yields.
$6 n+1$ lest case
Comparison Test

- In some of the applications, accuracy most imp factor eg. aircraft simulation
- In such applications predefined ops set is maintained based on the hos component properties \& index values.
- After developing the progreatn, the program op is always compared coth the predefined op set to cover thererrors called as comparison test.

SDLC Testing:

- In the slow development life cycle, various Lest plans are implemented at diff levels,
- In SDLC, 3 levels of testing on is conduc ted.
(i) Unit test :- Test op is performed on (ii) Dart of the program. In this test, the module correctness is taken into the acc ounl rat her than external behaviour of the program. In this testing, various white box test plans are implemented to cover the sloucturat errors.
(ii) Integration test - During the integration process, when the new modules are a dded to the existing system, there is a possibility of
new functional errors because functionality changes as the new modules are added), so some kind of the test is required in the intergration process to cover the functional errors
It uses the black box test plans. There are 3 kinds of integration process is present
(i) ToD Down
(ii) BoO BOTTOIM-U15
(iii) Sandwich

In TOP-down, the integration starts from root to leaf in this process livers are not required but steps are rem lased In the bottom -up, integration starts from leaf node to root note, in this process steps are not req. but drivers gre req.
In sandwich, integration starts from the root node \& leaf node simulal n ously.
Regression Test It means retest. It is not a development lest It is conducted when the develolimened program is in the operational state

- Doing the maintainence phase of the product, if any fraction of code is changed in the module, that introduces additional error in the entire system. So there is a need to retest the entire system to cover the error due to fractional change.
Smoke Test . - It is used in the "wrap-strink" applications when the developer is developing the Sow acc to the customer requirement priority list, some of the modules are added \& some are deleted to deploy the part of the system to customer location,

In this process, new functionalities are added so there is possibility of new errors, to cover the functional errors, black box test plans are introduced in this process. known as smoke tests.
(iii) System Test

During the system test op ${ }^{n}$ various attributes of the system is tested
(i) Recovery Test:

It focuses on the backup o functionality, i.e. during the operational state, if any unexpected occurs (system crash, power failure etc) how to recover the data.
(ii) Security Test:-

It focuses on the system protection, $i . e$. What kit of the security is provided (password choice, vores recognition, image pattern, etc.) to protect the system from the unauthorised accesses.
(iii) Stress Tests

It focuses on the load balancing, ie. how many no. of users can able to use the system at a time.
(iv) Performance Test:-

It focuses on the Slow reliability, i. e. how long the system is functioning without failure
6
Validation Test.

- In S/w eng. practices, customer evaluation is also an imp. factor, so customer conducts the test op to cover the errors by apply ing strange $9 / \mathrm{ps}$.
\qquad
\qquad
- Under this case, two kinds of test opn are perform ed, α \& β test,
- α-test is conducted by the customer at the developer site(functional testing). If any errors are identified during the α-test, then the program is immediately modified before deployment because developer is present.
- B-test is conducted by the end user/ customer at the customer's location, ie β-test is conducted after the deployment. If any errors are identified during β-test, those are reported to the maintainence team.

Support - When the develop ped product is deployed at the customer's location, support stage is req. to maintain the s ko from the uncovered error plat form changes, functional requirement changes, frequent requirement changes.

