Dote $\frac{\text { DBMS }}{(10 \text { marks })}$

Theory e $\frac{\text { Textbooks }}{\text { NORTH }}$
Exercise LC: RAMAKRISHNAN
(practise) Qutcries स्रormalisatio
Contents:-

1. ER Model \& Integrity Constraints] (I markquestions)
2. Schema Refinement (Normalization)
(4)
3. Query L anguoge \rightarrow Relational Algebra
(4)

Tulle Relational Calculus
4. Indexing \& Physical DB Design
5. Transaction \& Concurrency Control
(2 to 4)
Introduction:-
-Database:- Collection of related data.
DBMS:- SIW used to manage f access DB in efficient way User $\longleftrightarrow D B M \leq$ D $\longleftrightarrow D B$ DB N5 interface
\star If the vo

* File System or $O S$ files fail to manage $D B$ if $D B$ is too hug Limitations of File System:
(i) $T 00$ complex (too difficult) to access data from $D B$ files.
eg

\rightarrow Location of the file $\} \rightarrow$ Physical Details
\rightarrow Type of the file
\rightarrow anta format
-antoformat (Storage Details)
(ii) Accessing data using physical details is too difficult.

LiThe DBMS som to this is :-

- Hiding physical details to the external user.
\rightarrow Data \rightarrow Independency
(iii) I/O cost:- Na of secondary memory blocks (pages) transferred from secondary memory to main memory in order to access some DB. (The no of blocks transferred from secondary memory to main memory is the I/O cost.)
(IIOGB) $\left.\begin{array}{ll}51 \\ 52 & \text { Block } \\ 510 & 1\end{array} \right\rvert\, \leftarrow$ resides in select $*$ from stu where sid $=x$;
this query is executed when seconder file is first transferred from second a men to main mem (worst case all N blocks transferred of then the above query is executed with data of file in main memory.

DBMS sols to this problem:-

- Index to the DB Records/blocks

- Now, all the sid's dong with the pointers to the block in which corresponding sid resides are stored in index file, 50 we only need to transfer the index file to the main memory \& the query is executed, then the block with which contains ' x ' is tremsferosed to main memory (x not all blocks) hence less Il 0 cost through DBMs
File System takes more I/O cost, DBMS access the dato using ind so that I/O cost is too less.
(iv) Concurrency control:-

(these updates orch other f.
U1: Update SI
U2: Update S2

$U 1$	U^{\prime}
lock	
stud	
$t x t)$	lock (stud tx

but U1 $4 U_{2}$ dent interfere with each other, but even then U1 is locking the complete stud the file \& hence less concurency level by OS (less no. of simultaneous access.) - denied berle already

DBMS Solve:

- It locks record wise, so U1 will lock only S1 record f not comply Sud dit file 2.02 will be able to access ST 2 because it is not locked by un 4 hence simultaneous access. concurrency level meread.
concurrency level of record locking is more than concurrency level of file locking.

BMS Architecture:-- User Interface levels of Abstraction)
External Scherna.
Extemal Schema View level

$\rightarrow 3$ levels of abstraction blew user 4 hardware (Database)
di
physical Schema: - Storage details of Database.
t knows how data is physically shored in the database.i.e.
\rightarrow Recostructure structure $\quad \rightarrow$ Storage
\rightarrow Record structure
Meta Details
\rightarrow Location/Name/Type of file (Physical Metadata)
I by. Create Table Student (sid, ,Snare,); O \& its details like
15 in this case student table is Stored in $D B$ \& its details like location, size, etc. are stored in physical schema.
-onceptual Schema: - It hides physical details.
t knows what data exists in $D B$
VIEW (Virtual table):- data is not physically stored in view.
Every view refers one or more base tables \{subset of conceptual) scherna\}.
2DBMS (Relational DBM15):-
able: - collection of boos \& columns

Sid	name fikinen	
Si	A	$C S$
Si	A	$C S$
SB	B	IT

intuolbutes
(av) field.

Pity: - No of fields of the table. (e.g. 3 in above table), no. of columns.
uple (or record):- A row in table is called a table (or record). ardinality:- No of records in the table.
Relational Schema- Abstract details of table.
(Student (Sid, Ename, branch)
Relational Schema.
(records)
Relational Instance: If data exists in the table, then that ref of records is called a relational instance.
Cod Rules:-

- No two records of the table should be same in DBMS (to implement this rule, every record should have a candidate key)
Candidate key \therefore Min. Set of attributes used to differentiate records of the table. e.g. SID is the candidate key for the abowoPE table.
(Sid. Snare) is not candidate key, because it is not min. set that differentiates two records. (SID can alone do this).
leg. if a student can enroll in many courses

sid	cid	fee
si	$c 1$	\vdots
$s 1$	$c 2$	\vdots
si	$c 2$	
$s 2$	$c 3$	

in this case (sid ,cid) together forms the candidate key, because sid or cid alone canst differentiate blu diff records.

- sid cid \rightarrow pome (at tributes
- fee e \rightarrow non-preme at tribute.
* If candidate key forms a single attribute, then candidate key is called simple candidate keg, otherwise compound candidate key.
ম Attributes belongigato any any candidate key are prime attrib $R(1$ of the relation.

ternative Keys:- (Secondary keys)
et $\frac{\text { candidate keys except primary key. }}{\text { can }}$
pho, hnO_{3} (DOB, fnome) a
WUL values are expected, two records with same value of alteonativ. leys are not allowed.
More than one alternative keys are possible.
1.) There should be atleast one candidate key with NOT NULL
OVOPER KEY: set of attributes used to differentiate records (min. set not a constraint.)
g. If sid Can differentiate records, then (sid,sname) is a super key ,id,ppno) is also a super key, but (shame, frame) is not a super key. me . of the subset of superkey must be a candidate key.] imper key attribute Set = Candidate Keg attribute Set +0 or more other attributes.
Every candidate key is super key p but every super key may not be the candidate key.
g. Student (sid, shame, branch)
ey $\{$ sid\}: candidate keys
$\{$ sid, (sid, sname), (sid, branch), (sid, sname,branch) $\}$: Super keys
ibul $R\left(A 1, A_{2}, \ldots, A N\right)$, How many Super keys are possible with
i) only candidate key $\& A_{1} \& \rightarrow A_{1}$

10. of subsets possible from A_{2} to $A N \rightarrow 2^{N-1}$

Al can combine with all these subsets, total suberkeys 8
h 2^{N-1} (not +1 because one of the subset is empty, $\left\{A_{1}\right\}$ is also included in $\left.2^{N-1}\right)$.
3,fnc1) candidate keys:- $\left\{A_{1}, A_{2}\right\}$
I f_{1} combined with rest others $\rightarrow 2^{\mathrm{N}-1}$
no $A_{2} \cdots \quad \cdots \quad \rightarrow 2^{N-1}$
nair A. 1. 2 - together combined with rest others $\rightarrow 2^{\mathrm{N}-2}$
$A_{1} A_{1}$ $A_{1} A_{2} \longrightarrow A_{2} A_{1}$ $A_{1} A_{2} A_{3}, A_{2} A_{1} A_{1} A_{3}$! some keys are same in both the sets, so we have to delete them once,
\therefore total Super keys $=\mid 2^{N-1}+2^{N-1}-2^{N-2}$ because these super. keys are counted twice.

F(iii) $\left\{\left(A_{1}, A_{2}\right),\left(A_{3}, A_{4}\right) \xi \rightarrow\right.$ candidate keys:-
A_{1} combined with rest others $\rightarrow 2^{n-1}$
$A_{2} \rightarrow \quad \rightarrow 2^{n-1}$
$\left(A_{1}, A_{2}\right)$ together with rest others $\rightarrow 2^{n-2}$

\because total super keys:- $2^{n-2}+2^{n-2}-2^{n-4}$ he
((iv) $\left\{A_{1},\left(A_{2} A_{3}\right)\right\} \rightarrow$ candidate keys

(v) $\left\{A_{1}, A_{2}, A_{3}\right\} \rightarrow$ candidate keys
due to $A_{1} \rightarrow$

(vi) $R\left(A_{1}, A_{2}, \ldots, A N\right)$
[candidate key is not given]
How many super keys are possible?
(a) n !
(b) 2^{n} (c) 2^{n-1} (d) $2^{2^{n}}$

- take example, if we have $R(A, B, C)$

\# if every attribute of reln. is candidate key, then max $2^{n}-1$ superkeys are possible.
chem Refinement (Normalization):-
Eliminate/reduce redundancy in relations.
edundancy $\because \rightarrow$ Duplite copies of same data.
redundancy results in wastage of storage space.
If two or more independent rem. Ki are kept in same table, then redundancy is always possible.

same course id nammust have same course cid can have same name.

Problems because of redundancy

1. updation Anamoly:- updation req in all duplicates copies which is too costly.
2 Insertion Anamoly. Because of independent details, it is not possible to enter some del ais without other details, egg. we cont enter course details fora new course without addition of a student, because we rant put Id to be NULL as it is a bart of primary key.
2. Deletion Anamoly \therefore Because of deletion of some data, it is possible to loose some other independent data, eg. deletion of Student 51 course's C1 details, so we delete 1 st row, this causes course (G1 info to be deleted.
decomposition of the relation:-
splitting relation into twa or more relation.

alt the anamolies are overcome

Functional Dependency:-
sid \rightarrow shame, this means wherever the sid is same, then shame should be same, but not vice-versa.

Let R be the relational schema with x, y as attribute $\operatorname{set} \$$. $x \rightarrow y$ exists in R only if $T_{1} T_{2}$ tuples $\in R$ such that if $T_{1}, X=T_{2}, X$, then $T_{1}, Y=T_{2} Y$.

1. $X \rightarrow Y$ is always true, when X is super key, ie. if two super are same, then y must be same.
$\left.\begin{array}{ll}x & y \\ x_{1} & y_{1} \\ x_{1} & y_{2} \\ x_{1} & y_{1} \\ x y & y\end{array}\right]=y, ~$

> Trivial FD

Functional Dependency $<$ NonTrivial FD
Trivial FD:-
x, y are attributer sets over R
if $x \geq y$ then $x \rightarrow y$
(y is a subset of x) or (y is super set of x)
$\left.\begin{array}{l}\text { egg. Sid } \rightarrow \text { sid } \\ \text { sid, same } \rightarrow \text { sid } \\ \text { sid, shame } \rightarrow \text { sname } \\ \text { snare } \rightarrow \text { nom }\end{array}\right\} \rightarrow$ Trivigh
Every Trivial Dependency is always implied in the rein.
Non-Trivial FD:-

Properties of FD's:-
(1) Reflexive FD:- if $x \geq y$ then $x \rightarrow y$ is reflexive (Trivial)
(2) Transitivity :- if $x \rightarrow y$ \& $y \rightarrow z$ then $x \rightarrow z$
(3) Augmentation:- if $X \rightarrow Y$ then $x z \rightarrow y z$. (by splitting rule:-)
(4) splitting rule:- if $x \rightarrow Y z$ then $x \rightarrow y \& x \rightarrow z$ eg

$$
\left[\begin{array}{ccc}
A & B & C \\
\hline 1 & 1 & 2 \\
2 & 1 & 3 \\
1 & 2 & 4 \\
1 & 2 & 4
\end{array}\right]
$$

Attribute $\operatorname{closer}\left(x^{+}\right)$:-
Set of attributes determined by x

$$
\begin{aligned}
& R(A B C D) \\
& \{A \rightarrow B, B \rightarrow C, C \rightarrow D\} \\
& (A)^{+}=\{A, B, C, D\} \Rightarrow A \rightarrow A B C D \\
& A^{\uparrow} \rightarrow A \text { (Trivial) using splitting rule:- }
\end{aligned}
$$

$$
(C)^{+}=\underset{\substack{\{ \\\text { means } \\ C \rightarrow C}}{\{C, D)}
$$

$A B \rightarrow C D, A F \rightarrow D, D E \rightarrow F, C \rightarrow G, F \rightarrow E, G \rightarrow A\}$
which option is false?
a) $(C F)^{+}=A C D E F G \quad\left(C F^{+}\right)^{+}=\{G C, F, G, E, A, D\}$
b) $(B G)^{+}=A B C D G \quad \longrightarrow(B G)^{+}=\{B, G, A, C, D\}$
c) $(A F)^{+}=A C D E F G \rightarrow(A F)^{+}=\{A, F, E, D\}$
(d) $(A B)^{+}=A C D F G \quad \rightarrow(A B)^{+}=\{A, B, C, D, G\}$
juperkey:- Let R be the relational schema, $4 x$ be the some set of attributes over R, if X^{+}(closure of X) determines all attributes If R then X is said to be suberksy of ' R '.
$(x)^{+}=\{$All attributes of $R\}$
sûperkey

$$
\begin{aligned}
& R(A B C) \\
& F=\{A \rightarrow B, B \rightarrow C\} \\
& (A)^{+}=\{A, B, C\} \\
& \vdots
\end{aligned} \quad \begin{aligned}
& \text { (AB) } \\
& \begin{array}{ll}
\text { super } \\
\text { key } A \rightarrow A, A \rightarrow B B^{-C} & \text { super } \\
\text { key. }
\end{array}
\end{aligned}
$$

Candidate Try (minimal superkey):-
if (X is superkey of R \& no supeas proper set of X is superkey) then X is the candidate key.
(AB): Superkey
$A^{+}=\{$Not all attributes. $\}$
$B^{+}=\{$Not all attributes $\}$
then (AB): candidate key.
if superkey with one attribute is always a candidate key.

18

$$
\begin{aligned}
& R(A B C D E) \\
& \{A B \rightarrow C, B \rightarrow E, C \rightarrow D\} \cdot F D \\
& (A B)^{t}=\{A, B, C, D, E\}
\end{aligned}
$$

super, key
now, checking whether $A B$ is candidate key or not.
$(A)^{\prime}=\{A\} \longrightarrow$ not super key
(B) ${ }^{\prime}=\{B, E\} \rightarrow$ hot super key
\therefore proper subsets of $A B$ are not superkeys, $A B$ is Candidate th

* if we are not able to determine a good subset of RCABCls for suberkey:-
take all attributes:-
- $(A B C D E)^{+}=\{A, B, C, D, E)$
but $C \rightarrow D$
$\therefore D$ is not req. on LHS.
$\therefore \quad(A B C E)^{+}=\{A, B, C, D, E\}$
but $B \rightarrow E, E$ is not req on LHS

$$
(A B C)^{+}=\{A, B, C, D, E\}
$$

$A B \rightarrow C$, C not req. on $\angle H S$.

$$
\therefore(A B)^{+}=\{A, B, C, D, E\}
$$

now check for its whether it is candidate key.
Q. $R(A B C D E)$

$$
\{A B \rightarrow C, C \rightarrow D, B \rightarrow E, E \rightarrow A\}
$$

$(A B)^{t}=\left\{A, B_{6} C, D, E\right\} \rightarrow$ superkey
$(A)^{+}=\{A\} \rightarrow$ hot superkey
$1\left(B^{+}\right)=\{B, E, A, C, D\} \rightarrow$ Superkey.
1: proper subset of $(A B)^{+}$is a superkey, it is not candidate key.

* if Non-trivial FD
$x \rightarrow$ Prime Attributes in R
then R consist more than one candidate key. egg.

२ $R(A B C D)$

$$
\{A B \rightarrow C D, D \rightarrow A\}
$$

$(A B)^{t}=\{A, B, C, D\} \rightarrow$ super key (also candidate $\{$ key $\}$

$$
\left(A^{+}\right)=\{A\}
$$

$$
(B)^{+}=\{B\}
$$

Inhere is no X
SO A, B are prime attributes,

$$
D \rightarrow A
$$

$3 C D$ so replace A by D in $(A B)^{+}$
$(D B)^{+}=\{D, B, A, C, D\} \rightarrow$ super key
$(D)^{+}=\left\{D_{0} A\right\} \rightarrow$ not super key
$(B)^{+}=\{B y \rightarrow$ not superkey

- (D, B) is candidate key.

2. $R C A B C D\}$

$$
\{A B \rightarrow C D, C \rightarrow A, D \rightarrow B\}
$$

$(A B)^{+}=\{A, B, C, D\} \rightarrow$ super key
$(A)^{+}=\{A\} \rightarrow$ not super key
$(B)^{+}=\{B\} \rightarrow$ not super key
$A B$ is candidate key.

$$
C \rightarrow A
$$

replace A by C in $A B$

$$
\begin{aligned}
& (C B)^{+}=\{C, B, A, D\} \\
& C^{+}=\{C, A\} \\
& B^{+}=\{B\}
\end{aligned}
$$

$C B$ is candidate key.
now, $X \rightarrow$ prime attribute
$D \rightarrow B$ replace B by D

$$
\begin{aligned}
& (C D)^{+}\{Q, D, A, B\} \\
& C^{+}=\{C, A\} \\
& D^{+}=\{D, B\}
\end{aligned}
$$

CD is candidate key
$\longrightarrow A$, replace C by A
$(A D)^{+}=\{A, D, B, C\}$
$A^{+}=\{A\} \quad \therefore(A D)$ is candidate Key.
$D^{+}=\{D, B\} \quad \therefore$.

$$
\begin{aligned}
& \text { Q } R(A B C D E F) \\
& \{A B \rightarrow C, C \rightarrow D, D \rightarrow E, E \rightarrow F, F \rightarrow A\} \\
& \Gamma(A B)^{+}=\{A, B, C, D, E, F\} \rightarrow \text { super key \& candidate key } \\
& A^{+}=\{A\} \\
& B^{+}=\{B\} \\
& F \rightarrow A \text { replace } A \text { by } F
\end{aligned}
$$

(1) $\frac{(F B)^{+}}{F^{+}}=\{F, B, A, C, D, E\} \rightarrow$ super key f candidate key

$$
\begin{aligned}
F^{+} & =\{F, A\} \\
\therefore B^{+} & =\{B\}
\end{aligned}
$$

$$
E \rightarrow F_{,} \text {replace } F \text { by } E
$$

$(E B)^{+}=\{E, B, F, A, C, D\} \rightarrow$ super key $\&$ candidate key.

$$
(B)^{+}=\{E, F, A\}
$$

$$
\text { - }(B)^{+}=\{B\}
$$

$$
D \rightarrow E \text {, replace } E \text { by } D
$$

$(D B)^{+}=\{D, B, E, F, A, C\} \rightarrow$ supertey $\&$ candidate key

$$
\begin{aligned}
& D^{+}=\{D, E, F, A\} \\
& B^{+}=\{B G
\end{aligned}
$$

$C \rightarrow D, \therefore$ replace D by C
$(B)^{+}=\{C, B, D, E, F, A\} \cdot-$ super key \& candidate key

$$
\begin{aligned}
& C^{+}=\{C, D, E, F, A\} \\
& B^{+}=\{B\} \\
& A B \rightarrow C
\end{aligned}
$$

\therefore replace C by $A B$
Q $(A B, B)=(A, B)$ which is repeated
(f) $R(A B C D E F)$

$$
\text { a }\{A B \rightarrow C, C G+D, D \rightarrow E, E \rightarrow B F, F \rightarrow A\}
$$

$\left(1\left[(A B)^{+}\{A, B, C, D, E, F\} \rightarrow\right.\right.$ super key \& candidate key.

$$
\begin{aligned}
& A+=\{A\} \\
& B^{+}=\{B\}
\end{aligned}
$$

$$
B^{+}\{B\}, E \rightarrow B \text { (by splitting) }
$$

\& $E \rightarrow B F \geqslant$ replace B by E
$(A E)^{+}=\{A, E, B, F, C, D\} \rightarrow$ super key 4 not candidate key
e $\begin{aligned} & A^{+}=\{A\} \\ & E^{+}=\{E, B, F, A, C, D\}\end{aligned}$
$F \rightarrow A$, replace A by F in $A B$
$n(F B) t=\{F, B, A, C, D, E\} \rightarrow$ super key \& candidate key $B^{+}=\{B\}$
$E \rightarrow B F$
$E^{+}{ }^{+}=\{A, B, E, D, E, F\} \rightarrow$ candidate key
$D \rightarrow E^{+}$
$D^{H}=\{A, B, C, D, E, F\} \rightarrow$ candidate key
$\overrightarrow{C H}=\{A, B, C, D, E, F\} \rightarrow$ candidate key
non
2. $R(A B C)$ with no, trivial $F D^{\prime}$'s $(A B C)^{+}=\{A, B, C\}$ $\begin{array}{lll}A^{+}=A & C^{+}=C & B C^{+}=B C \\ B^{+}=B & A B^{+}=A B & A C^{+}=A\end{array}$

* If there is no nontrivial FD, then all the attributes taken together makes the $B^{+}=B \quad A B^{+}=A B \quad A C^{+}=A C$ candidate key. $A B C \rightarrow$ candidate key
? $R(A B C D E)$
$\{A \rightarrow B, B \rightarrow C, C \rightarrow B D \rightarrow A\}$
$(A E)^{+}=\{A, E, B, C, D\} \rightarrow$ supper $R e y \&$ candidate key.
$A^{+}=\{A, B, C, D\}$
$E^{+}=\{E\}$
$\therefore(B E),(\Subset E),(D E) \rightarrow$ candidate keys also.
Q $R(A B C D E H)$

$$
\begin{aligned}
& \{A \rightarrow B, B C \rightarrow D, E \rightarrow C, D \rightarrow A\} \\
& (A B C)^{+}=\{A, B, C, D\} \\
& \left(A B^{B} B H\right)^{+}=\{A, E, B, C, D\} \text { super } \\
& \begin{aligned}
& \therefore(B E \cdot 1)^{+}=\{B, C, E, A, D\} \rightarrow \\
& B^{+}=\{B\} \text { super key\& } \\
& \text { candidate }
\end{aligned} \\
& E^{+}=\{E, C\}
\end{aligned}
$$

$$
\begin{aligned}
& A \rightarrow B, \text { replace } B \text { by } A \\
& (A F)^{+}=\left\{A, E, B, C, D,{ }_{i s} \rightarrow \text { super key } 4\right. \\
& A+=\{A, B\} \\
& E^{+}=\{E, C\}
\end{aligned}
$$

$E^{+}=\{E, C\}$
$(A B)^{+}=\{A, B\}$
$(B E)^{+}=\{B, E, C, D, A\}$
$D \rightarrow A$: replace A by D
$C D E H^{+}=\left\{D, E, A, C, B\right.$ Bit $^{\prime} \rightarrow$ super key $D^{t}=\{D, A, B\}$

$$
B C \rightarrow D_{0-}^{E^{+}=\text {replace } D \text { by } B C}
$$

$f(B C E H)^{\}}=\{A B C D E H\}$ - super key
$(B E H)^{+}=\{A, B, C, D, E, H\} \rightarrow$ super key
\therefore BCEH is not a candidate key.
Membership Test:-
$F=\{. \quad$ If F be the FD set $\& x \rightarrow y$ be $x \rightarrow y$

> $F=\{A \rightarrow B, B \rightarrow C\}$
check if it implies, ie . $F \vDash A \rightarrow C$
I $A^{+}=\{A, B, C\}: A \rightarrow C$
if $F F A B \rightarrow C$

- $(A B)^{+}=(A, B, C]$

$$
\therefore A B \rightarrow C
$$

$$
\text { 1. } F=\{A B \rightarrow C, C \rightarrow D\} F B \rightarrow D
$$

$$
B^{+}=\{B\} \rightarrow
$$

$$
B \nrightarrow D
$$

$$
\begin{align*}
& \text { 7. } F=\{A B \rightarrow C, B C \rightarrow D\}+A B \rightarrow D \\
& (A B)^{+}=\{A B, C, D\}
\end{align*}
$$

Qi Equality of $A D$ sets:-

$$
\begin{gathered}
\bar{F}=\{ \} \\
C G=\{(\})
\end{gathered}
$$

F equals to (G) only if
(iii) F covers G :-

All G functional dependencies should be implied in F.
(ii) G covers F:-

All F FD's should be implied in G.

$$
\begin{aligned}
& \{A \rightarrow B C, B \rightarrow C, A C \rightarrow B\} \rightarrow F \\
& =\{A B \rightarrow C, A \rightarrow B, A \rightarrow C\} \rightarrow C \\
& \text { (i) if } F \text { covers } 6:
\end{aligned}
$$

${ }^{6}(i)$ if F covers G :-

$$
\begin{aligned}
& \text { check FD's of } F^{\prime}- \\
& (A B+)^{2}=\{A, B, f\}^{2} \quad(A)^{4}=\{A, B, C\} \\
& \therefore A B \rightarrow C
\end{aligned}
$$

(i) check if G covers F :
$\left.\left(A^{+}\right)=\{A, B\},\right\}$
$\left(B^{+}\right)=\left\{\begin{array}{l}A \rightarrow C \\ \text { B }\end{array}\right\}\{B\}$

$$
\begin{aligned}
& (A C)^{+}=(A, C, B) \\
& A C \rightarrow B
\end{aligned}
$$

G doesn't cover F
G is subset of F,
GCA
$2 F_{1}=\{A \rightarrow B, A B \rightarrow C, D \rightarrow A C, D \rightarrow E\}$
$F_{2}=\{A \rightarrow B G D \rightarrow A E\}$
check if F_{1} covers F_{2}
$A^{+}=\{A, B, C\}$
$\cdot D^{+}=\{D, A, C, E\}$
$D \rightarrow A E$
F_{1} covers F_{2}

$$
F_{1} F_{1} \equiv F_{2}
$$

Q. $R(A B C D)=\{A B \rightarrow C D, D \rightarrow A, C \rightarrow B\}$

What are the candidate kero of RICBCD)
$\left[(C D)^{+}=(C, D, B) \rightarrow\right.$ super key $\&$ candidate key $C^{+}=(C, B), ~ M y ~ a n s w e r$
$A B \rightarrow C D$
replace $C D$ by $A B$
$A B$. II find $E D$ set of the sub relation $R 1$
sir's Answer: An for this take all (subsets, of RS $\begin{array}{ll}P 1(B C D) & B^{+}=\{B\}(B \rightarrow B)(\text { proper } \\ C \rightarrow B) & C^{+}=\{C, B\}(C \rightarrow C, C \rightarrow B) \\ D^{+}=\left(D A^{-}(D \rightarrow C) D \rightarrow A\right)\end{array}$
$D^{+}=\{D, A\}(D \rightarrow D, D \rightarrow A)$ but A is not in $R 1$, no need

$B C^{+}=\{B, C \xi(B C \rightarrow B C)$
$\left.C D^{+}=\{C, D, A, B)\right\}(C D \rightarrow C D, C D \rightarrow A, C D \rightarrow B\}$
$B D^{+}=\{B, A, C\}$ trivial A not in
FoIson
candide keys.
$\{C D, B D\}$
Q. $R(A B C D E F)$

$$
\left\{A B \rightarrow C, B \rightarrow D_{0} B C \rightarrow A_{0} D \rightarrow E F\right\}
$$

What are the candidate keys of R1(ABCD)?
$R 1(A B C D) \rightarrow$ proper subsets $\rightarrow A^{+}=\{A\}$

Now

$$
R\left\{(A B Q D)^{\dagger}=\{A, B, C, D\}\right.
$$

$$
(A B D)^{+}=\{A, B, C, D\}
$$

2. $\quad(A B)^{+}-\{A, B, C, D\} \rightarrow$ candidate key

$$
A^{t}=\{A\}
$$

$$
B^{+}=\{B, D\}
$$

Now $B C \rightarrow A D$
replace Bl A by $B C$.

$$
\begin{aligned}
\therefore(B C)\} & =\{A, B, C, D\} \rightarrow \text { candidate key } \\
C & =\{C\}
\end{aligned}
$$

Ci- properties of Decomposition:-
Lossless Join
Dependency Decomposition preserving Decomposition.

(i) but if $R_{1} \times R_{2} \supset R$ (cosy join)
(F 1) (F_{2})
(loin blew subrelations should - be equal to original relation
$F_{1} \cup F_{2} \equiv\{F C$ Dependency preserving $\}$ - R_{1} ^ $R_{2} \subset R$ (not possible) $F_{1} \cup F_{2} \supset F$ (not preserving) not
possible).

Dependency Preserving Decomposition :-
It R De the Relational schema with FD set F decomposed into R_{1}, R_{2}, , $R N$ with $F D$ sets $F 1, F 2, \ldots, F N$
in general $F_{1} \cup F_{2} U$. Fm $\subseteq F$
If FIUF2U. UFN $\equiv F$ (Dependency Preserving)
If FIUF2U . . UFNCF (not dependency Preserving)

$$
\text { If } R(A B C D)
$$

$$
\begin{aligned}
& \{A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow A\} \\
& (1 \Delta R)(R C),(C D)\}
\end{aligned}
$$

$$
D=\{(A B),(B C),(C D)\}
$$

) Identify functional dependencies of Subrelations
a $A D$ of $A B$:-

$$
\text { C } \begin{aligned}
& A F D \text { of } A B:- \\
& A B^{+}=\{A, B, C, D\}: \longrightarrow A B \rightarrow C D \\
& A^{+}=\{A, B, C, D\} \rightarrow A \rightarrow A, A \rightarrow B, A \rightarrow C, A \rightarrow D \\
& B^{+}=\{C, D, A, B\} \rightarrow B \rightarrow C \rightarrow B \rightarrow A, B \rightarrow C, B \rightarrow D
\end{aligned}
$$

we achieved these 3 rem.
$A-B$
$B \rightarrow C$
FD of $B C$:-

$$
\begin{aligned}
& B^{+}=\{C, D, A, B\}:-B \rightarrow C \\
& C^{+}=\{C, D, A, B\}:-C \rightarrow B
\end{aligned}
$$

FD of $C D$:bufwedont have $D \rightarrow A$, using transitivity
 We have to get
$D \rightarrow A$ from this

$$
\begin{aligned}
& \text { approach } \& \\
& R(A B C D) \rightarrow\{A B \rightarrow C D, D \rightarrow A\} \\
& \text { not from Db. } \\
& F D^{\prime} \quad D=\{B C D, A D\} \\
& B^{+}=\{B\} \\
& F D \text { 'S of } A D \\
& \text { - } D \rightarrow A \text { is in FD of BOPDA } A \\
& \text { - } A B \rightarrow C D \text { is not in FD of } \\
& C^{+}=\{C\} \\
& A^{+}=\{A\} \\
& A D \text { or } B C D \text {. } \\
& \left.D^{+}=\{D, A\}\right\}^{\circ}-D \rightarrow A \alpha \quad D^{+}=\{D, A\}^{\prime}-D \rightarrow A \\
& B C^{+}=\{B, C\} \text { (because is in } R(B C D) \text {) } \\
& B D^{+}=\{B, D, A, C\}:-B D=C \\
& F_{1} \cup F_{2} C F
\end{aligned}
$$

$A B C$ -
$A^{+}=\{A\}$
${ }^{3+}=\{8, \lambda\}$

Γ correct soon :- $A B+=\left\{\begin{array}{l}B C, B, C \& \Rightarrow A B+C \\ B C\end{array}\right.$
Q $R\left(A B(D E G)^{A C+}=\{A, C, B\} \Rightarrow A C \rightarrow A \mid\right.$
$\{A B \rightarrow C, A C \rightarrow B, A D \rightarrow E, B \rightarrow D, B C \rightarrow A, E \rightarrow G\}$

$$
D_{1}=\{A B C, A C D E, A D G\}
$$

FD's of ABC.
$A^{+}=\{A\}$
$B^{+}=\{B\{ \}$
FD'S of ACDE
$A^{+}=\{A\}-$
$C^{+}=\{C\}-$
$D^{+}=\{D\}$
$E t=\{E, G\}$
$A B+\{\hat{Q} A, B, C$ aroskersin $\}=\mid \overline{A B \rightarrow C}]$
$B C+\{B, C, A, B d y$
$A C^{-1}=\{A, C, B, B P$
we can + get
$B \rightarrow D$ \& $E \rightarrow$

$$
B \rightarrow D \text { \& } E \rightarrow G
$$

from these FD's,
\therefore not dependency
preserving
fins.:-not dependency preserving $C O E=2, E Q, E\}$
4: Natural join((x)
$r:$ projection $(\pi) \pi(R)$
\because Selection (σ)
$\because \operatorname{cros} 5$ product (x)

FD's of ADG

$$
A^{+}=\{A\}
$$

$$
D_{D^{t}}=\{D G
$$

$$
\begin{aligned}
& G^{+}=\{69 \\
& \text { ant } 80 y
\end{aligned}
$$

$A D+=S A, D,\langle\operatorname{Ant}$

$$
\begin{aligned}
& A G+=\{A, G\} \\
& D G^{+}=S D
\end{aligned}
$$

$$
D G^{+}=\{A, G\}
$$

$A D^{+}\{A, D, E, 4$
$A E+\{A, E, A\}$
$A C D+\left\{S^{+},\{ \}\right.$
$C E+=\{C, E\}$

$D E^{+}\{D E A\}$

$$
\begin{aligned}
& A C D+=\left\{A, C, D, S_{n}, E\right\} \mid A C D \rightarrow E \\
& A C E+=\{A, C, E\}
\end{aligned}
$$

$A D^{+}=\{A, D, E, A \nmid\}=\{A D+E$

$$
\begin{aligned}
& A C E+=\{A,-E G \\
& A D E F=S O Q
\end{aligned}
$$

$$
\begin{aligned}
& A E^{+}=S A, D, E Y \\
& C O E^{+}=2 G, O, F G
\end{aligned}
$$

sid	cid	fie
51	$C 1$	$5 k$
Si	$C 1$	$5 k$
Si	$C 2$	$6 k$

$\pi(R)$. cid fee $\left.\left[\begin{array}{ll}\text { cid } & \text { fee } \\ \text { cl } & 5 k \\ \text { ch } & 6 k\end{array}\right]\right\}$ Result of
relational
Algebra quern? B always distind
tuples.
$\sigma_{p}(R)$: results tables from relation R those are satis effect
predrate condition P
"Retrieve sides who are enrolled source C2"
$\pi_{\text {sid }}(\sigma$ Gid $-2 a)(R)$
ross Product :-
V XS: results all attributes of R followed by all attributes Of S with all combination of tuples R\&S.

KIf R has x attributes $\&$ was y attributes, then $R x s$ has $x+y$ attributes.

* If R has ' M ' tuples \& S has 'zero' tuples, then $R \times S$ has zero tuples.
Natural Join:- ($(\mathbb{)}$

(1) R XS
(2) $\underset{R \text { sidissid }}{\sim} \times 5$: Selection of tuples equality D/w common Rsidessid attribute.
(3) KR Asia, cid,feesname $\left(\sigma_{R s a-s s i}(R \times 5)\right)$: projection of distinct

$\frac{R}{R(A B C)} \quad S(B C D)$

$$
(A B C)=\pi_{A, B, C, D}\left(\sigma_{R B=S B A S}(R \times S)\right.
$$

2. $R(A B) \quad S(C D)$

RMS $=$ Rule RXS (if no common at tributes, then nat wal join alegen routes to cross product.) Lossless Join Decomposition:-
et R be the relational scheme keith decomposed into $R 1, R 2$, N. In general $R_{1} \Perp R_{2} \bowtie R_{3} \propto \triangle R N \supseteq R$ if $R_{1} \bowtie R_{2} M \quad \triangle R N=R$, t m it is lossless join decomposition. ult of if $R_{1} \not A R_{2} \bowtie$.. $\triangle R N \cong R$, then it is cosy jain decomposition. tuitional bra que

$$
R, \Delta R \circlearrowleft R, \quad \text { cosy join }
$$

recomposed into $R 1(A B)$ \& $R 2(A C)$

* If common attribute $\left(R_{1} \cap R 2\right)$ is supeokey of either R1 pr atieasis one of rein then decomposition is lossless.
ributs

1 | A | B |
| :---: | :---: |
| 1 | 1 |
| 2 | 1 |
| 3 | 2 |

$R=\left[\begin{array}{ll}A & C \\ 1 & 2 \\ 2 & 1 \\ 3 & 2\end{array}\right]$
$R_{1} \bowtie R_{2}$

A	B	C
1	1	2
2	1	1
3	2	2

now $R_{1} \bowtie R_{2}=R$ \therefore lOSSless join.
Ie C If common attribute $\left(R_{1} \cap R_{2}\right)$ is not super key of both the cither R1 or R2 or both, then decomposition is alwe lossy join.

Requirements \rightarrow ER Model \rightarrow Tables \rightarrow Normalization Create tables in e. RDBMS
Q. $R(A B C)\{A \rightarrow B, A \rightarrow C\}$

$$
\begin{aligned}
& b_{n} D_{1}=\{A B, B C\} \\
& F D_{S}^{\prime} \text { of } A B \\
& A^{+}=\{A, B, A: B \rightarrow B \\
& B^{t}-\{B\}
\end{aligned}
$$

FD's of $A C$

$$
\begin{aligned}
& \text { FD's of } B C \\
& B^{+}=\{8, B B, C\}-A+A C\{B\}
\end{aligned}
$$

in $R(A B C):-A \rightarrow B$ is obtained from $F D$ of $A B$
lossless join. \therefore kossyijoin \quad not deter dency
Sir's Answer:preserving

$$
\left(R_{1} \cap R_{2}\right)=B^{+}=B \text { :- not superkey, cosy join }
$$

$$
\begin{aligned}
& R_{1} \cap R_{2}=A^{+}=A B C-\text { superkey, lossless join. } \\
& R(A B C D)
\end{aligned}
$$

2. $R(A B C D E)$
3.

$$
\begin{aligned}
& B^{+}=\{B, E\} \rightarrow \text { super key } \\
& \therefore \text { lass join losslesisjoin }
\end{aligned}
$$

lass join losslespjoin
4 Let R be the relational Schema with FD set F de composed
into $R 1 \& R 2$, there is lossless join decomposition only if:-
[1] $R 1 \cup R 2=R$
[2] $R 1 \cap R 2 \neq \varphi$
[3] R1 $\cap_{1} R_{2} \rightarrow R_{1}\left(R_{1} \cap R_{2}\right.$ is super key of R_{1})
R1AR2 R_{22} (R1)R2 is super key of R2)
2. $R(A B C D G G)$

$$
\begin{aligned}
& \{A B \rightarrow C, A C \rightarrow B, A D \rightarrow E, B \rightarrow D, B C \rightarrow A, E \rightarrow G\} \\
& D_{1}=\{A B, B C, A B D E, E G\} \\
& \text { ci) Union is } A B C D E G \\
& D_{2}=\{A B C, A C D E, A D G) \\
& \text { (ii) } A B \cap B C=B \\
& \text { (i) union is } A B C D E G \\
& \text { (ii) } A B C \cap A C D E=A C \\
& B \cap A B D C=B \\
& B \cap E G=\varphi \\
& \therefore \text { cosy join } \\
& \text { (iii) } \begin{array}{l}
A C \cap \cdot A D G=A \\
A^{+}=\{A\} \rightarrow n
\end{array} \\
& \begin{array}{l}
A^{+}=\{A\} \rightarrow \text { not superkey } \\
\text { cosy join }
\end{array} \\
& \text { loss join. }
\end{aligned}
$$

$$
\begin{aligned}
& \left\{A B \rightarrow C, C \rightarrow D_{2} B \rightarrow E\right\} \\
& \begin{array}{ll}
D=\{A B C, C D\} \\
A B C \cap C D=C \quad 2 . D=\{A B C, D E \\
A B C \cap D E=4 . & \text { 3. } D=\{A B C, C D E\} \\
A B C \cap C D E=C
\end{array} \\
& \begin{array}{ll}
C^{+}=\{C, D\} \rightarrow \text { not } \\
\text { cosy join }
\end{array} \text { super lossyjoin } \quad C^{+}=\{C, D\} \rightarrow \text { not super key } \\
& \text { 4. } D=\{A B C D, B E\} \quad\left(R_{1} \cup R_{2} \neq R\right) \\
& A B C D \cap B E=B \text { in mise the decomposition. }
\end{aligned}
$$

Sir's answer:-

$D=\{A B, B C, A B D E, E G\}$ (i)st condition is
met
$A B \cap B C=B$
$B^{+}=\{B D\} \rightarrow$ not superkey
$\therefore A B \& B C$ can't be join.
$A B \cap A B D E=A B$
$A B+=A B C D E(0+A B D E)$
$A B \& A B D E$ can be join.
$A B \cup A B D E=A B D E$

$A B \cup A B D E=A B D E$
 ($A B D E$) (BC) (EG) are left

$A B D E \cap B C=B$
$B^{+}=B \rightarrow$ not superkey of either of $A B D E \& B C$
$A B D E \cap E G=E$
$E^{+}=\{E G\} \rightarrow$ superkey of $E G$
($A B D E G$) (BC)
$A B D E G \cap B C=B$
$B^{+}=\{B\} \rightarrow$ not superkey of either of them they car't be join.
cosy join
$A C^{+}=\{A, C, B, C$

$$
\text { Ans. }-A B C \cap A C D E=A C
$$

$A C^{+}=\{A, C, B\} \rightarrow$ superkey of $A B C$
$A B j o i n$ with $E G$, but $A B \cap E G=\varnothing$, We could only start with
$A B \& A B D E$

$$
\begin{aligned}
& \therefore A B \& \\
& A B \cup A \\
& (A B D E) \\
& A B D E \cap \\
& B^{+}= \\
& A B D E \cap \\
& E^{+}=\{ \\
& (A B D E \\
& A B D E \\
& B^{+}=\{ \\
& \therefore \text { they } \\
& \therefore 10 S{ }^{c}= \\
& \frac{1}{2}=\{A E \\
& A B C D \\
& A C^{+}= \\
& A r
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text { we can join them } \\
& A B C \cup A C D E=A B C D E
\end{aligned}
$$ $A B C D E \cap A D G=A D$

$A D^{+}=\{A, D, E\{G\} \Rightarrow A D \rightarrow E \& \underset{A D}{ } \rightarrow G$, from transitivity since AD E
we cant use we
$E \rightarrow G \perp$ make it
$A D+\angle A, D, E G\}$ $\cdot A D^{+}=\{A, D, G\} \rightarrow$ Superkey
$A D^{+}-\{A, D, E G S$,
$D e$
and
We cant join them, of ADG Can join them
start/ again
$A B \subset \cap A D G=A$
$A^{+}=\{A\} \rightarrow$ not a suboikey for dry of them
$A C D E$ wet art again
$A D^{+}=\$ A, D, E$

Date
26.08.12

Normal Forms (Eliminate or reduce the redundancy):-

$$
\text { 1. } \underbrace{1 \mathrm{NF} 2.2 \mathrm{NF} 3.3 \mathrm{NF}}_{\text {Single-valued Function }} 4 . \mathrm{BCNF}, \underbrace{5.4 \mathrm{NF}}_{\text {Multivalued }}
$$

ie Dependencies $(x \rightarrow y)$ FD
ie. if $x_{1} \rightarrow y_{1}$, then anytime $\quad(x \rightarrow \rightarrow y)$
x_{1} comes UHS, then RHS will
x_{1} comes LH
always be y_{1}

- Unto BCNF, it eliminates redundancy because of FD. (O\%. (redundancy)
- BCNF relation still suffers from redundancy because of Multivalued Dependency.
* If relation is in 2NF, then it is in $\mathbf{N N F}$,
if $n ", 3 N F, n \cdots, 2 N F, \& 50 \mathrm{on}$.

First Normal Form:-
Relation R is in 1 NF , only if (1) multivalued attributes exist in R CR should consist only single valued attribute.

* The by default Normal form of RDBMS is 1 NF .

* $R(A B C D) \quad\{A \rightarrow B, B \rightarrow C\}$
D is not in FD's, SOD is multivalued attribute. (so Rein.
$A^{t}=\{A, B, C\} \rightarrow$ doesn't include $D . \quad$ is not in
include D in candidate key A.
$(A D)^{+}=\{A, B, C, D\} \rightarrow$ multivalued attribute D converted in valued atroibute.
* if $X \rightarrow Y$ Non Toivial $F D$ in R Wind X is not super key.

Rule:- Then $x \rightarrow y$ forms redundancy in R.

| redan- |
| :--- | :--- |
| dandy |\(\left|\begin{array}{ll}x \& y

x_{1} \& y_{1}

x_{1} \& x_{1}

x_{1} \& y_{2}

x_{2} \& y_{2}

x \rightarrow y

1 \& 1

1 \&

1\end{array}\right|\)

A $x \rightarrow y$ non trivial $F D$ with x : superkey then $(x \rightarrow y)$ doesn't RULE 2:- Cause redundancy.
Q. $R(A B C D E F)$

$$
\{A B \rightarrow C D, D \rightarrow A, C \rightarrow E, D \rightarrow F\}
$$

$A B^{+}=\{A, B, C, D, E, F\} \rightarrow$ superkey
$A B \rightarrow C$ using Rules \& Rule 2 not Suberkeys
$A B \rightarrow D \quad A B \rightarrow C D$ (no redundancy)
super key
candidate key: $\{A B, D B\}$

$$
\underbrace{\substack{\text { redundancy } \\ b_{i}, E, D \rightarrow A, D \rightarrow F}}_{\text {not suberkeys }}
$$

Possible Non-Trivial $F D(x \rightarrow y)$ which forms Redundancy.
(i) Proper subset of candidate key \rightarrow Non prime attribute Case (Always cause redundancy).
from previous ques. only $D \rightarrow F$ comes under this case
(ii) Non-prime attribute \rightarrow Non prime attribute
(iii) Proper Subset of candidate key \rightarrow Proper subset of other case 3 candidate key.
4th Case
(iv) Non-prime attribute \rightarrow Proper subset of CK. X $R(A B C D)$

$$
\begin{aligned}
& \{A B \rightarrow C, C \rightarrow D, G \rightarrow A\} \\
& A B^{+}=\{A B C, D\}
\end{aligned}
$$

$C \rightarrow A$, septa follows case 4
but we can replace A by C

$$
C B^{+}=\{B, C, A, D\}
$$

ti super key
$\therefore C \rightarrow A$ proper subset of prime proper subset e
attribute other CR
Cproper \therefore th case not possible (\& hence no redundancy).
subset of (k).

* In 15t Normal form, Case 1, Case 2, case 3 are allowed, i.e. all possible redundancies are allowed.

1 NF	\checkmark	\checkmark	\checkmark	
2 NF	\times		\checkmark	x
3 NF	\times	x	\checkmark	x
$B C N F$	\times	x	\times	

Redundancy Level

$$
1 \mathrm{NF}>2 \mathrm{NF}>3 \mathrm{NF}>\mathrm{BCNF}
$$

O) Redundancy Redundancy possible Cunctional due to multivatued Dependency) functional dependency.
Second Normal Form:-
Relational schema R is in 2 NF only if
(1) R should be in 1 NF .
(2) R shouldn't consist any partial dependencies (case 1).

Partial Dependency:-
(A) (A) x : Any candidate key,

Y: Proper subset of candidate key.
A: Non-prime attobute.
$y \rightarrow A$: partial dependency.
Third Normal Form: $?$
Relational Schema R is in $3 N F$ only in if Every non-trivial FD $x \rightarrow y$ if with
(i) X : super key We cant say that X should be a prime] prime attribute. casecis may occur.
(ii) Y : prime attribute.

$$
\underset{t}{x} \longrightarrow y_{1}
$$

super key prime attribute
Case 1:- proper subset of $C K \rightarrow$ Non prime not super key
not allowed.
Case 2:- Non-prime \rightarrow Non-prime not super key
\therefore not allowed.
Case 3:- Proper subset of $\mathrm{CK} \rightarrow$ proper subset of other CK not suberkey prime attribute \therefore allowed.

BCNF:

Relational Schema R is in BCNF only if every non-trivial $F D$ $x \rightarrow y$ with x should be a super key.
all the 3 cases are not allowed

Q. $R(A B C D E)$

$$
\{A B \rightarrow C, C \rightarrow D, B \rightarrow E\}
$$

example:-

Fid	Pro	Enamel
$E 1$	$P 1$	A
$E 1$	P_{2}	A
$E 2$	$P 2$	B
$E 2$	P_{3}	B
$E 3$	P_{3}	B

(Fid Pro): (candidate key
(Fid \rightarrow Enamel) \rightarrow Partial proper mom Depenacincy proper nom subset prime of Ck attribute
Q. $R(A B C D)$

$$
\{A B \rightarrow C, C \rightarrow D, B \rightarrow E\}
$$

Ans. All elements are in FD's, \therefore in 1 NF

$$
A B^{+}=\left\{A, B, C_{0} D, E\right\}
$$

$-(A, B) \rightarrow$ Candidate key
but $\underset{\text { proper }}{B \rightarrow E}$ (not in $2 N F)$ proper non-prime
subset attribute
of CK

Decompose into 2 NF :-
$A C D \quad B E$

(now in 2NF)
(now in 2 NF)
but

$$
\text { no }, A B \rightarrow C
$$

so add B init
$A B C D$
$A B \rightarrow C$.
Ck non-prime
\therefore in (2NF)
$C \rightarrow D($ not in 3NF)
non tron
prime porte
If $(A B \rightarrow C \& C \rightarrow D)$ from $A B C D$ \& $(B \rightarrow E)$ from $B E$, dep. preservation.
Check for 3NF:-

Decompose into 3 NF:-

Q $R(A B C D E F)$
$\{A \rightarrow B C D E F, B C \rightarrow A D E F, D \rightarrow E, B \rightarrow F\}$
\rightarrow att elements are in $E D^{\prime} s, \therefore 1 \mathrm{NF}$.
now $C K$:-

$$
\begin{array}{ll}
A^{+}=\{A, B, C, D, E, F\} & , B C^{+}=\{A D E F B C\} \\
A \text { is }\} & B C \text { is } .
\end{array}
$$

$\therefore A$ is CK.
$\because B C$ is $C K$.
\rightarrow now for $2 N F$ (check)
proper subset of CK—Non-prime att (not allowed)

- $A \rightarrow B C D E F(\therefore$ in 2NF)
${ }_{C K}$
- $B C \rightarrow A D E F(\%$ in $2 N F)$
ck
- $D \rightarrow E(\operatorname{in} 2 N F)$
$-B \rightarrow F$ (not in 2NF)
proper non
subset prime
of attribu
of CK attribute
Decompose into 2 NF:-
$A B C D E \quad B F \quad A B$
$A \rightarrow B C D E$
$B C \rightarrow A D E$
$D \rightarrow E$
but $A^{+}=\{A, B, C B, t, G\} \rightarrow F$ comes from $B \rightarrow F$
$B C \rightarrow$ F not in this case:-
$\mathrm{BC} \rightarrow \mathrm{F}$ not mo this case:-

$$
B \rightarrow F \quad A \rightarrow F
$$

$B C \rightarrow A D E$ by augmentation $B C \rightarrow F C$
\therefore dependency preservation.
now check for $3 N F$:$B C \rightarrow A D E F$

$B C^{t}=\{B,, A, D) \quad \therefore$ Dependency $\cdot A B C D E \cap B F=B$
Call in super key Preserving. which is super key of $B F$
(al
(ale in 3NF) \quad lossless join of $A B C D E$ \& $B F$
\& in BCNF too.
Q. $R(A B C D)$

$B C \rightarrow A D$
${ }_{\&} B C \rightarrow D$
$\&$
$\therefore B C \rightarrow E$
$\therefore B C \rightarrow E$
\rightarrow All elements in $F D, \therefore 1 \mathrm{NF}$

$$
A B^{+}=\{A, B, C, D\}, A^{+}=\{A\}, B^{+}=\{B\}
$$

\rightarrow Now, check for 2 NF:

$$
A B \rightarrow C(\text { in } 2 N F)
$$

ck
$B C \rightarrow D$ (in 2NF).
not proper
subset of C_{k}

Q.R(ABCDEFGHIJ)

$$
\{A B \rightarrow C, A \rightarrow D, B \rightarrow F, F \rightarrow G H, D \rightarrow I J)
$$

all elements in $F D, \because 1 \mathrm{NF}$.

$$
\begin{aligned}
& A B^{+}=\{A, B, C, D, E, F, G, H, I, J\} \\
& A^{+}=\{A, \quad D, E, J, J\} \\
& B^{+}=\{B, \quad, \quad, F, G, H\}
\end{aligned}
$$

$\therefore A B$ is candidate key
Check for 2NF:-

$$
\text { - } A B \rightarrow C(\text { in } 2 N F)
$$

${ }_{C} \mathrm{~K}$

- A $\rightarrow D E$ (not
proper non
subset of prime
CK attribute

2 NF Decomposition (follow this rule for 2 NF decomposition)
for $A \rightarrow D E$

- calculate A^{+}

$$
A^{+}=\{A, D, E, I, J\}
$$

$$
\therefore A D E I J
$$

for B-N

- Calculate B^{+}
$B\rangle=\{B, F, G, H\}$
BF CH
G is not in both 04 them
\rightarrow added B because of BFGH.
$A B C$
added A because of ADEIJ

Decompose into 3 NF:-

Q. $R(A B D L P T)$

$$
\{B \rightarrow P T, T \rightarrow L, A \rightarrow D\}
$$

\rightarrow au elements in $F D_{j}:$ 1 NF

$$
A B^{+}=\{A, B, D, P, T, L\}
$$

$\therefore A B$ is the candidate key.
Now check for 2 NF :-

non- non-
prime prime
Decompose into $2 N P$:-

- $B \rightarrow P T$
- $A \rightarrow D$
$B^{+}=\left\{B_{2} P_{5} T, L\right\}$
$A^{+}=\{A, D\}$
$B P T L$
AD
$B \rightarrow B T$
$A \rightarrow D$
$T \rightarrow L$
\therefore dep. preserved.
but cosy join because $A D \cap B P T L=\varnothing$
- but we cant include B in $A D$ or A in $B P T L$, because it will lead to tables in 2 NF.
added make another table added
of B Paul
of BPTL coss less t dep preserving
Q. $R(A B C D E]$

$$
\{A \rightarrow B C, C D \rightarrow E, B \rightarrow D, E \rightarrow A)
$$

\rightarrow all elements in $F D_{3} \therefore$ in 1 NF .
Cher

$$
\begin{aligned}
& A^{+}=\{A, B, C, D, E\} \\
& \therefore C K=[A] \\
& E^{+}=\left\{E^{+}, A, B, C, D\right\} \\
& \therefore C K=\mid \vec{B}] \\
& B C^{+}=\{B, C, A, D, E\} \\
& \therefore C K=B C] \\
& C D^{+}=\{A, B, C, D, E\} \\
& \therefore C K=\mid C D
\end{aligned}
$$

Check for BCNF :-
only $B \rightarrow D$ is not in $B C N F$
B is not superkey.
\therefore not in BCNF.
Check for 3 NF :-
S $\rightarrow D$ prime
not $\begin{aligned} & \text { superkey attribute } \\ & \text { (of } C K C D)\end{aligned}$
\therefore (in 3NF) \& no ED with non-prime \rightarrow non-prime.
\therefore in 3NF.
Decompose into BCNF

Q. $R(A B C D E F G H)$

$$
\{A B \rightarrow C, A C \rightarrow B, A D \rightarrow E, B \rightarrow D, B C \rightarrow A, E \rightarrow E\}
$$

\rightarrow Cit Hare $F \& H$ are not m FD, not in 1 NF .
now, take CK :-

$$
\begin{aligned}
A B^{+} & =\{A, B, C, D, E, G\} \\
A C^{+} & =\{A, B, C, D, E, G\} \\
B C^{+} & =\{A, B, C, D, E, G\} \\
\therefore C K & =\{A B F H, A C F H, B C F H\}
\end{aligned}
$$

check for 2 NF :-

- $B C \rightarrow A$ \& $E \rightarrow G($ in 2 NF $)$

Decomposition in 2 45 -

if we add D in/ ist/relh. rem.
if
$(E \longrightarrow G)$ should be removed from 1 St rel after

$$
\begin{array}{lll}
A B C F H & B D & A D E G \\
A B \rightarrow C(\operatorname{lin} 3 N F) & B \rightarrow B D & A D \rightarrow E(\text { in } 3 N F) \\
A C \rightarrow B(\operatorname{lin} 3 N F) & \{B G & E \rightarrow G \\
A B C \rightarrow A(\text { in } 3 N F) & \{A D\}
\end{array}
$$

$$
\rightarrow \text { added because of list rem. }
$$

Decompose into 3NF:-

$A B C F H$	$B D$	$A D E$	$E G$
$A B \rightarrow C$	$B \rightarrow D$	$A D \rightarrow E$	$E \rightarrow G$
$A C \rightarrow B$	$\{B\}$	$\{A D\}$	$\{E\}$
$B C \rightarrow A$	in	in	in
$\{A B F H, A C F H$,	$B C N F$	$B C N F$	$B C N F$
$B C E H\}$			

Decompose into BCNF:-
Decompose into $B C N F:-$

$A B C$	$[A B F H$
$A B \rightarrow C$	$\{A B F H\}$
$A C \rightarrow B$	added because of $A B C$
$B C \rightarrow A$	in $B C N F$

$\{A B, A C, B C\}$
$\{A B, A C, B C\}$
(in BCNF)
Q. $R(A B C D)$

$$
\{A B \rightarrow C D, D \rightarrow A\}
$$

check for B
in 1 NF :-

$$
\begin{array}{r}
C K: \quad A B^{+}=\{A B C D\} \\
C D^{+}=\{C, D, A\} \\
\therefore C K=\{A B\} B D\}
\end{array}
$$

Check for BCNF:-
$D \rightarrow A($ not in $B C N F)$
Check for $3 N \mathrm{NF:-}$
$A B \rightarrow C D$ (in 3NF)
${ }_{D \rightarrow A}^{\text {super key }}$ (in $\left.3 N F\right)$

$$
D \rightarrow A
$$

prime attribute

(not preserving dependency $\sqrt{A B \rightarrow C D}$ $C K=\{B D\}, D \rightarrow A C$ though A preserv not in Rein. BCD, $B D^{+}=\{B, D, A, C\}, A B \rightarrow C B \Rightarrow A B \rightarrow C$

Imp:-
sometimes

- Relation are not possible to decompose to BCNF by preserving the dependency.

DB Design	INF	INF	$3 N F$	BCNF
Goals				
(1) 0% redundancy	\times	\times	\times	$\times($ for MVD V
(2)Lossless join decomposing				
(3)				
Dependency preserving				

A If her Rein R doesn't consist any nontrivial dependency, then R always on BCNF (means in $R(A B C)$, then (K=ACBO y^{\prime} BCNF fails when there is atleast one non-trivial function dependency.
Binary Relation
R(AB) Relation with two attributes is always. in BCNF.
(1) $\{A \rightarrow B\} \rightarrow B Q N E \quad A^{-}<\{A B \xi, A \rightarrow$ suberkey, in $B C N F$
(2) $\{B \rightarrow A\} \rightarrow B C N I F \quad B^{+}=\{B, A\}, B \rightarrow$ superkey, \quad in $B C N F$.
(3) $\{A \rightarrow B, B \rightarrow A\}=B C N E \quad A^{+}=\{A, B\}, B^{+}=\{B, A\}, A \notin B \rightarrow$ superkeys, in BeNT.
(4) $\{\xi \rightarrow$ CK $\{A B\} t$ from above rule $j t$ is in $B C N F$.

A Relational Sohema R consists only simple candidate key, then R aluoays in $2 N E$. [as proper subset of $C K \rightarrow$ but may be not in 3NF or BCNF. \quad non-prime
e.g.

$$
\begin{aligned}
& \text { R. } \begin{array}{l}
\{B C D) \text { in } 3 N F \\
\begin{array}{l}
A \rightarrow B, B \rightarrow C, C \rightarrow D, B \rightarrow A\} \rightarrow \text { not in } 3 N F
\end{array} \\
A^{+}=\{A B C D\} \\
B^{+}=\{A B C D\} \\
C^{+}=\{C D\}
\end{array} \quad C K=\{A, B\} \\
&
\end{aligned}
$$ 1 ad tribute only, so its proper subset is φ, so this is not going to happen when ar are non- nom-

prime prime
*Relational Schema R consists only prime attributes then R is always in 3NF (may or may not in $B C N F$). because
proa proper retbset of $C k \rightarrow$ proper subset of other $C k$ (still possible).

$$
\text { e.g. } \begin{aligned}
& R(A B C D E F) \\
&\{A B \rightarrow C,(\rightarrow D, D \rightarrow E, E \rightarrow F, F \rightarrow A\} \\
& A B^{+}=\{A B C D E F\} \\
& F B^{+}=\{E B A C D E\} \\
& E B^{+}=\{E B E A C D\} \\
& D B^{+}=\{A B C D E \not\} \\
& C B^{+}=\{A B C D E F\}
\end{aligned}
$$

all are in 3NF, because of and condr, ie right side is prime attribute, ". in $3 N F$, but from this example left side doesn't have super key.
\star Rem. R is in $3 N F l$ only simple candidate keys in R, R is in BCNF.
because proper subset © © $\mathrm{CK} \rightarrow$ proper subset of other ${ }^{\circ} \mathrm{CK}$ but au afore simple, so the above HD is not present, \& hence in BCNF .
Minimal Cover (canonical cover)
$F=\{A \rightarrow B, B \rightarrow C, A \rightarrow C A B \rightarrow A\} \rightarrow$ trivial dependency

$$
\begin{aligned}
& \nRightarrow \\
& F_{1}=\{A B \rightarrow C, A \rightarrow B\} \\
& \begin{array}{l}
F_{1}=\{A B \rightarrow C, A \rightarrow B\} \\
F_{2}=\{A \rightarrow C, A \rightarrow B\}
\end{array} \\
& \text { Extraneous Attributes } \\
& \text { check } F_{1} \text { covers } F_{2} \\
& A^{+}=\{A, B, C\} \\
& \{x y z \rightarrow W, x \rightarrow y, x \rightarrow z\} \\
& \therefore F_{1} \text { covers } F_{2} \\
& A^{+}=\{A, B, C\} \\
& A B^{+}=\{A, B, C\} \\
& F_{2} \text { covers } F_{1} \\
& \text { F } F_{1}: F_{2} \\
& \begin{array}{rl}
* & F=\{A B \rightarrow C, A \rightarrow B, B \rightarrow A\} \text { or } B \rightarrow C, A \rightarrow B, B \rightarrow A \\
F A A B \rightarrow C
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& F_{m} \equiv\{A \rightarrow B C, B \rightarrow A\} \\
& \star \text { Minimal cover may not be } \\
& \text { unique but all minimal covers } \\
& \text { are logically equival int to each other. } \\
& \text { if } A \rightarrow C \text { if } A \rightarrow C \\
& \text { Q. }\{A B C D \rightarrow E F, A D \rightarrow B C, E \rightarrow F A B \rightarrow\} \\
& A D \rightarrow B C \\
& A D^{+}=\{A D B C E f\} \\
& \therefore A D \rightarrow E F \\
& \therefore\{A D \rightarrow E F, A D \rightarrow B C, E \rightarrow F, A B \rightarrow C\} \\
& A D \rightarrow B C E E, E \rightarrow F, A B \rightarrow C \\
& \text { bat } E \rightarrow F \\
& \therefore A D \rightarrow B C E, E \rightarrow F, A B \rightarrow C \\
& A D \rightarrow B C \quad A B \rightarrow C \\
& A B \rightarrow C \\
& A B^{+}=\{A, B, C\} \\
& A B= \\
& F_{m}=\{A D \rightarrow B E, E \rightarrow F, A B \rightarrow C\}
\end{aligned}
$$

$$
\{A \rightarrow B C, C D \rightarrow E, E \rightarrow C, D \rightarrow A E H, A H \rightarrow D, D H \rightarrow B C\}
$$

$\left\{A \rightarrow B C, E \rightarrow C, \begin{array}{l}D \rightarrow A E H, A H \rightarrow D, \begin{array}{l}D H \rightarrow B C\} \\ D \rightarrow H \\ D H \rightarrow B\end{array} \\ \quad \begin{array}{l}D H \\ \text { Hnot req.here }\end{array}\end{array}\right.$

$$
\{A \rightarrow B C, E \rightarrow C, D \rightarrow A E H \supset A H \rightarrow D, D \rightarrow B C\}
$$

$$
\equiv\{A \rightarrow B C, E \rightarrow C, D \rightarrow A E H C, A H \rightarrow D\}
$$

$$
=\{A \rightarrow B C \backsim C, D \rightarrow A E H, A H \rightarrow D\}
$$

Multivalued Dependencies:- (MVD)
Redundancy in Relation R
(Non-trivial FOK MVD (Non-trivial
FD) $\begin{gathered}(x \rightarrow y) \\ \text { 4not }\end{gathered}$
$(x \rightarrow y)$
unot superkey

$$
\begin{aligned}
& \begin{array}{ll}
B \rightarrow A \\
B \rightarrow C & C \rightarrow B \\
B \rightarrow B \alpha
\end{array} \\
& \text { Q. }\{A \rightarrow B, B \rightarrow A C, C \rightarrow A B\} \\
& A^{+}=\{A, B, C\} \\
& F_{\mathrm{m}^{2}}\{A \rightarrow B, B \rightarrow C, C \rightarrow A\} \\
& \text { Q. }\{A \rightarrow B C, C D \rightarrow E, E \rightarrow C, D \rightarrow A E H, A B H \rightarrow B D, D H \rightarrow B C\} \\
& \begin{array}{ll}
A \rightarrow B \\
A \rightarrow C & D \rightarrow E, E \rightarrow C
\end{array} \quad A B H \rightarrow D(\text { trivial })
\end{aligned}
$$

$\star R(A B C D)$
$\{A \rightarrow B C \rightarrow D\} \quad$ rein. $\} \rightarrow$ when independent rein.
Candidate key:(AC) are merged, 4 ind dependent ED's comes into same table, then redundancy occurs.
possible redundancy because MVD:-
If two or more multivalued attributes in R converted into single valued attributes, then R suffers from redundancy because of MVD.
egg.

(Add P no \& ono to candidate key)

* No nontrivial FD(. BCNF).
* Not free from redundancy (MVD)

MVD:- Let R be the relationod schema $f x, y$ be the attribute sets over R.
Z is $R-\{X \cup Y\}$ \{nil at tributes of R
$x \rightarrow y$ exist R only
$x \rightarrow \rightarrow y$ exists in R only if t_{1}, t_{2}, t_{3}, t_{4} tuples $\in R$
(a) $t_{1} \cdot x=t_{2} \cdot x=t_{3} \cdot x=t_{4} \cdot x$
f (b) $t_{1} \cdot y=t_{2} \cdot y$ and $t_{3} \cdot y=t_{4} \cdot y$
\& (c) $t_{1}, z=t_{3.2}$ and $t_{2} \cdot z=t_{4} . z$
MVD rules:-
(1) Complementation Rule:-
if $x \rightarrow-y$ then $x \rightarrow \rightarrow-(x \cup y)$
$[R(A B C D)$ if $A \rightarrow B$ then $A \rightarrow C D$]
(2) Trivial MVD:-
$X \rightarrow \rightarrow Y$ is trivial only if

$$
\begin{aligned}
& x \geq y \text { of } x \cup Y=R \\
& \text { e.g } A(A B C D) \quad A B \rightarrow A, A B \rightarrow A B \\
& \\
& \\
& \\
& A B \rightarrow C D, A \rightarrow B C D
\end{aligned}
$$

(3) Transitivity:-
if $x \rightarrow y$ \& $y \rightarrow z$ then $x \rightarrow(z-y)$ [All attributes of z except y]
egg. $A B \rightarrow C, C \rightarrow D E$ then $A B \rightarrow D E$
$A B \rightarrow C D, C D \rightarrow D E$ then $A B \rightarrow E$

$$
\{D, E\}-\{C, D\}=\{E\}
$$

(4) Augmentation:-
if $X \rightarrow Y \& z \geq W$ then $X Z \rightarrow Y W$ if $A \rightarrow B$ then $A C \rightarrow B$ $A C D \rightarrow \rightarrow B C$ $A C D \rightarrow B C D$
$A C D \rightarrow B D$ $A C D \rightarrow B D$
(5) Relication:-

Every FD is ass MVD
if $x \rightarrow y$ then $x \rightarrow y$
(c) MVD not allowed to split

$$
\left\{\begin{array}{l}
\{\rightarrow \rightarrow y z\} \neq\{x \rightarrow \rightarrow y, x \rightarrow-1 z\} \\
\{x \rightarrow y z\}=\{x \rightarrow y, x \rightarrow z\}
\end{array}\right.
$$

Q. True or not:-
(i) if $x \rightarrow y z$ then $x \rightarrow-y, x \rightarrow \rightarrow \quad$ (T)
(ii) if $x \rightarrow \rightarrow y$ then $x \rightarrow \rightarrow y, x \rightarrow z \quad$ (F)
(iii) if $x \rightarrow y_{z}$ then $x \rightarrow y, x \rightarrow z$
(iv) if $X \rightarrow Y Z$ then $X \rightarrow Y, X \rightarrow Z$

4NF:- Relation R is in 4NF only if:
(1) Every non trivial $F D x \rightarrow y$ with x should be a super key (BCNF).
(2) Every non trivial MVD $x \rightarrow y$ with x to be a super key.
Note:- Super key or candidate key is always determined FD's only because single valued functional dependencies are key dependencies.
MVD's are data dependencies.

Query Languages:-

$T R C, S Q L, R A$

- Query condo, evaluates row by row on data base table with one row at a time.
$T R C \rightarrow$ fires first order logic \& predicate calculus. First Order $\operatorname{logic}: \Lambda, V, 7, \longrightarrow, \leftrightarrows$
Predicate Quantifiers: $-\exists, \forall$

Relational Algebra
Basic operator:
π :- projection
σ :- selection
X:- cross product
U - union
-:- set difference
ρ :- rename
Derived Operators:
\bowtie : join $\quad(\pi, \sigma, x)$
\cap : intersection R hS $=R-(R-S)$
/ division

$5 |$| B | C | D |
| :--- | :--- | :--- |
| 2 | 3 | 4 |
| 2 | 5 | 1 |

*wended to join the tables because we cant compares M. C \& S . C because that 2. mitis comparison ex Bo posits at a tim
*To compare two rows of same table, we need to perform self join of the same table.
Natural (Join ((∞) :-

$$
R \triangle S=\int_{A B C D}\left(\sigma_{\substack{R . B=S \cdot B \\ R \cdot C=S . C}}(R \times S)\right)
$$

Outer Join:-
(i) Left Outer Join
(iii) Right =
(iii) Full

Left Outer Join:-
$R \triangle S=R \bowtie S$ \& tuples from R that failed join condn.

A	B	C	D
$\frac{1}{3}$	2	3	4
	1	2	Null

Abreast
Exact no. of tuples as in R.
Right Outer Join:-
RAE RNS = RNS \& tuples from that failed join conan

A	B	C	D
1	2	3	4
Null	2	5	1

Full outer Join:-

$$
R \nsim S=(R \bowtie S) \cup(R \nVdash S)
$$

A	B	C	D
1	2	3	4
3	1	2	NULL
NULL	2	5	1

U, \cap, - (set operations)
Union Compatible:-
R\&S are union compatible only if :-
(1) no. of columns of $R \& S$ should be same.
(2) Range of attribute of R\&S should be similar. character
Sid shame
attributes are of diff types, so $U, \cap,-$ not possible.
studied

sid shame

shad stuamame

U, 0 ,- possible even though names will be ar diff. conly condn is that their ranges must be similar.)
\& In that case, result will take column names from is relation.

Date
01.09 .12

Division:-

\Rightarrow sid of student enrolled some course.
for this, project distinct sid's $\Rightarrow \pi_{\text {sid }}(E)$
\Rightarrow sid of student enrolled every course. (Division Operator).
$\pi_{\text {side id }}^{\text {in }}(E) / \pi_{\text {cid }}(C)\left[\begin{array}{l}\text { This retrieves sid which has all the cid } \\ \text { as given by denominator } \pi_{\text {cia }}(C)\end{array}\right]$
resulut:-51 since $\pi_{c i a}(c)=0, c_{2}, c_{3}$
Division Operator is derived Operator.

$(A O B) \cap(A, B)^{C}$
Q. suppliers (sid, shame, rating)
parts (pis, pname, colour)
catalogs (sid, bid, cost)
(a) Retrieve sid of the suppliers who supplies some red part Ans. $\pi_{\text {sid }}\left(\sigma_{\text {colour= red }}(\right.$ catalog \bowtie parts $\left.)\right) \rightarrow M y$ answer

$\pi_{\text {sid }}\left(\sigma_{\text {colour }=\text { red }} \wedge\right.$ catalog p $\sigma_{\text {Aborts. bid }}($ catalog x parts $\left.)\right)$
(b) Retrieve sid of the surbiber who supply some red or some green part.

Ans.
Aid $\left(\operatorname{catalog} \bowtie\left(\sigma_{\text {colowraredy }}(\right.\right.$ parts $\left.\left.)\right)\right)$ colowr=green
cold
(a) \quad sid $($ catalog M cowlowe $=$ red $($ phots $))) U$
$\pi_{\operatorname{sid}}\left(\right.$ catalog $M\left(\sigma_{\text {colour }}=\right.$ green $($ parts $\left.\left.)\right)\right)$
(c) Retrieve sid of the supplier who sulydy some red part \& some green part.
$\pi_{\text {sid }}\left(\right.$ (catalog $\bowtie\left(\sigma_{\text {colour }=\text { red }}(\right.$ parts $\left.\left.)\right)\right) \cap$
$\pi_{\text {sid }}\left(\right.$ Catalog $\pitchfork\left(\sigma_{\text {colour }}=\right.$ green $($ parts $\left.\left.)\right)\right)$
but not
$\pi_{\text {sid }}\left(\right.$ catalog $\wedge\left(\sigma_{\text {colour }}=\right.$ red $\wedge($ parts $\left.\left.)\right)\right)$
This is wrong, becaus colour will be either green or red but not both]
or colour = green
Q. Suppliers (sid, shame, rating) with 100 tuples. catalog (sid) bid) with 50 tuples.
max no. of tuples in (suppticys A catalog).
$\sigma_{\text {suppliers.sid }}$ (suppliers \times catalog $)$
catalog. sid
Soln:-Assxme sid is the primary key of suppliers, but not of catalog
at max,

max no. of tuples $=50$

Generalisation:-

$$
\therefore \begin{gathered}
\max \cdot n 0 \\
\text { of tuples }= \\
n
\end{gathered}
$$

Q. Relation $R(A B C), S(A D E), P(D F G)$
are the 3 rets. With $20,30,40$ tuples respec, how many max no. of tuples in $R \bowtie S \bowtie P$
Ans 30. 30. (av 20? ?) - thor

Q Retrieve sid of the supplier who supply every part. Ans

$$
\begin{aligned}
& \pi_{\text {sid }}(\text { s } \\
& \left(\pi_{\text {sid }, \text { pidatalog }}(\text { carats }) / \pi_{\text {pid }}(\text { par (ss })\right)
\end{aligned}
$$

\Downarrow
$\pi_{\text {sid }}($ catalog $)-\pi_{\text {sid }}\left(\pi_{\text {sid }}(\right.$ catalog $) \times$ parts - Catalog $)$
Q. Retrieve sid of the supplier who supply every red part. fins.

$$
\left.\pi_{\text {sid bid }}(\text { catalog }) / \pi_{\text {bid }} \text { (Ootour-sed }(\text { parts })\right)
$$

Q. Retrieve sid of the supple who supply atleast two parts. Ans. Same supbliegost diff parts (If it supplies 1 part, then conan fails

sid of supplier who supply atleast 3 parts:-

$$
\begin{aligned}
& \left.\pi \quad\left(\begin{array}{l}
\sigma \\
t_{1} \cdot \operatorname{sid} \\
t_{1} \cdot \operatorname{sid}=t_{2} \cdot \operatorname{sid}= \\
t_{3} \text { sid }=
\end{array} \rho\left(t_{1}, \text { catalog }\right) \times \rho\left(t_{2}, \text { catalog }\right) \times \rho\left(t_{3}, \text { catalog }\right)\right)\right) \\
& \left(\begin{array}{l}
\left.t_{3} \text { sid }\right) \hat{1} \\
\left(t_{1} \text {.pd } \neq t_{2} \text { id } \neq\right. \\
\left.t_{3} \cdot \text { id }\right)
\end{array}\right. \\
& \text { not possible, so write it like this } \\
& \left(t_{1} \cdot \text { sid }=t_{2} \text {.sid }\right) \wedge\left(t_{1} \text { sid }=t_{3} \cdot \text { sid }\right) \wedge\left(t_{2} \cdot \text { sid }=t_{3} \cdot \text { sid }\right)
\end{aligned}
$$

Q. Sid of the suppliers who supply exactly two parts? Ans. $\binom{$ sid of suppliers }{ atleast $~$ parts }$-\binom{$ sid of suppliers }{ atleast 3 parts }
$2,3,4=-23,4$,
$34+$
Q. Sid of the suppliers who supply atmost two paris? Ans.
sid of sypblicas
who supply

$$
\mid \pi_{\text {sid }} \text { (suppliers) } P-\left|\begin{array}{l}
\text { sid of suppliers } \\
\text { supplying attest } \\
\text { three parts. }
\end{array}\right|
$$

$$
\pi_{\text {sid (cat@log) }\left|-\left|\begin{array}{c}
\text { sid of suppliers } \\
\text { supplying attest } \\
\text { three parts. }
\end{array}\right|\right.}^{\substack{\text { sid of suppliers } \\
\text { Supplying at least one } 4 \\
\text { utmost 2 parts. }} \begin{array}{c}
\text { because in } \\
\text { catalog rem } \\
\text { the supplier } \\
\text { entry will be } \\
\text { done when it } \\
\text { has supplies. } \\
\text { atteast one } \\
\text { part. }
\end{array}}
$$

Q. Retrieve sid of supplier who has supplied most expensive part

catalog.

> supplier who doesn't Supply most expensive part

 Retrieve pairs of sid such that supplier with sid 1 should charge more than supplier with side for some bart. ?

$$
\begin{aligned}
& \sigma_{(} \cdot \operatorname{sid} \neq\left(\rho\left(\cos t_{1}, \operatorname{cotalog}\right) \times \rho\left(t_{2},(\operatorname{atalog})\right)\right) \\
& \left.t_{2} \cdot \operatorname{sid}\right) \wedge \\
& \left(t_{1} \cdot \cos t>\right. \\
& \left.t_{2} \cdot \cos t\right) \wedge \\
& \left(t_{1} \cdot \text {.id }=\right. \\
& \left.t_{2} \cdot \text { id }\right)
\end{aligned}
$$

Q. Retrieve suppliers who supply $2^{\text {nd }}$ most expensive part.
Q. Retrieve sid who supply at least two red parts. r^{π} sid $\quad t_{1} \quad t_{2}$

Q Retrieve sid of suppliers who supply least expensive part.

Renaming Coluners

$$
\left.\begin{array}{l}
\left.\Perp \begin{array}{l}
\text { sides } A \\
\text { sid }
\end{array} \rho_{\text {spec }}(\text { catalog })\right) \\
\text { pip }
\end{array}\right]\left[\begin{array}{l}
\text { supplier } \\
\text { supplying atleast } \\
2 \text { parts. }
\end{array}\right]
$$

since column names are diff hence it degenrates to cross product.

Page no. 77
Q23.

30 query gives :-
names of female students

* Whenever there is a natural join or cross product, th a it gives (some' not cats. λ for 'all', we use division operator. who score more marks than 'all' male students. (Minus gives the compliment).

SQL:- (Structured Query Language)
(1) DDL (Data Definition Language)

To modify structure of DB table.
egg. Create Table, Drop Table, Alter Table Add/remove Attributes.
(2) DML (Data Manipulation Language)

To modify database records(data)
egg. Insert into, Delete from, update bel
(3) DCL (Data Control Language) [Transaction \& [conivactioncy control] Transaction based, commit, rollback (Aport).
(4) DQL (Data Query Language)
(Retrieve data from DB)
e.g. Select, Group By, where, having

- Select Distinct $A 1, A_{2}, \ldots, A N$ from $R 1, R_{2} \ldots, R_{M}$ where P,
con ${ }^{n}$ of selection operator

$$
\pi_{A 1, A 2, \ldots, A N}\left(\sigma_{P}(R 1 \times R 2 \times \ldots, \ldots R M)\right)
$$

Q. Retrieve sid of the supplier who supply some red part.
C distinct
Ans.

- Select sid from parts, catalog where catalog pid=parts. pid AND catalog. colour= 'RED';

$$
\pi \equiv \text { select distinct }
$$

Basic SQL Clauses:-
Select [distinct] $A_{1}, A_{2}, \ldots, A N$ from $R 1, R 2, \ldots, R M$ [where P] [Group by (Attributes)[Having condition]] [order by attributes [DESC]]
(1) From Clause:- Cross product (x)
(2) Where Clause:-Selection operator (σ)
(3) Group By (Attribute)

Aggregate Operators
(1) COUNT ([DISTNCT) Attributes)
(2) $\operatorname{SUM}\left(n^{n} \quad n\right.$?
(3) AVG ($n \cdots n^{n}$.
(4) MIN (Attributes)
(3) MAX (\quad)

INULL values discarded by aggregation
\rightarrow Arithmetic operations with NULL results NULL. egg. NULL I $=$ NULL .

* Count (*) = no. of records Nobles \rightarrow (6)
* count (marks) $=$ no. of nongrut marks \rightarrow (5)
* Count (distinct marks) 3
* sum (marks) $=\operatorname{sum}$ at Don-null marks $=290$
* sum (distin a marts) (170)
* AVG (marks) = SullA (marks) /COUNT (marks)
* AVG (distinct marks) $=$ SUM (distinct marks)/COUNT (distinct

Group by (lace is not possible to derive using marks) basic relational algebra.

Q. Select min (m) sid from stud \rightarrow not valid
gives
min
marks $\quad\left[\begin{array}{l}\text { Aggregation in is not } \\ \text { allowed alongnith other } \\ \text { attribute in select clause. }\end{array}\right.$

\min	branch
40	cs
58	Es

This means that only those attributes are allouca in group by clause along which are there in the group by cause.

- select min (m), branch from stud group by branch. [this is allowed]
A alongwith the aggregate function allowed to select other attribute in select clause only if other attribute is in Group by clause.
* If Groups By clause exist aggregate fr. in group by clause is applied for every group.
Q. Select mintararist min(max(marks)) from stud group by branch.
OlD:- 80 the group by is used for both max. \& min. aggregate fr. \& not only for max (onarks).
\therefore Nested Aggregation is not useful in the SQL.
$\therefore \operatorname{Arg}(\min (\max (m)))=m a x(m)$
(4) Having Clause:- [l where is applied for every record, $\left.\begin{array}{l}\text { having is" " each group. }\end{array}\right]$

Selection of groups that satisfy "having" condition.

* select Students whose branch Avg. Marks go eater than 50 .

Select striohame from/ staid where Drench
select sid, from stud group by branch having Avg (Marks) >50;
kIf the seed cause doesn't have aggregate $f n$..
re can use having clause without group by clause (if group by clause doesn't exist, having clause condm. is applied to each record \& hence having clause \equiv where clause).

from stud

- Select sid where marks= max (marks),
we con't do this because where clause is applied tuple by tuple \& results in all tuples of the rets.
because max(marks) for one tuple is that marks itself,
\therefore marks $=$ marks $\&$ hence all tuples are selected.
Correction:-
Select sid from stud where marks = (select max (marks) from stud);
Nested Queries :-
Query inside Query

IN Operator:-
To check given tuple is member of set of tuples or not: X IN $\{2,3,5,7,10\}$
if $x=5$ IN returns True
if $x=6$, IN returns false
e.g, sid of the suppliers supplying RED pard.
select sid
from catalog
where pidncselect pid from
from parts
where colour = 'RED')

\rightarrow first inner query is executed. which returns \{RP1, P3\}
\rightarrow then outer query is executed which gives $\left\{P_{1}, P_{3}\right\}$ as $0 / P$. Or
Select sid from catalog c, parts'p where c.pid = p.pid and p. colour $={ }^{\text {R }}$ RED; [[his is less efficient then nested subqueries because of cross product.]
杖NOT IN is complement of IN?
ANy Operator $\{\exists:$ income exist $\}$

- Operators that can be used by 'ANY' operator: $\langle,\langle=\rangle,\rangle=,,=,\langle \rangle$ A1 operator ANY\&.C? $\}$
eg

$$
x<\operatorname{ANY}\{2,3,45,7,10\}
$$

ANY rettions true only if:-
Atleast one tuple in subquery result should satisfy comparisc operation of given value.
c.g $x=4$ ANY returns true

Fid (sid scored $>95 \%$)
\& $x<A N Y\{$ empty set $\} \rightarrow$ returns false (If imper query results empty, any all ays
retums fay se.) returns false.)
INEquat
IN is equivalent to ${ }^{\prime}=$ ANY?.

AIf inner query result is empty, IN operator results false.
ALL Operators: $\{\forall$ in all (Every)
A1 operator ALL\{ \}

$$
x<A L L\{2,3,5,7,10\}
$$

if $X=0$ ALL returns true
if $X=6$ ALL returns false.
ALL operator returns false only if atleast one table in the inner query should fail' the comparison operator.
$x<$ ALL \{Empty $\}$
ALL returns false only if atleast 1 tublofalled the condition.
ALL operator returns true if inner query result is empty.

$$
\{N O T \text { IN }\} \equiv\{\langle>A L K\}
$$

If inner query is empty, then NOT IN returns true.

Q. A [id | Name age | | |
| :---: | :---: | :---: |
| -12 | A | 60 |
| 15 | S | 24 |
| 99 | R | 11 |\(\left|\begin{array}{ccc}id \& Name age

\hline \frac{15}{25} \& S \& 24

98 \& R \& 40

99 \& R \& 11\end{array}\right|\)| 10 | P no Age | |
| :--- | :--- | :--- |
| 10 | 2200 | 02 |
| 99 | 2100 | 01 |

(1) $(A \cup B) \Delta_{A}$ bid >40 c.id<15 C

Ans. 7 [no of tuples retwened]
(2) Select $A \cdot D$ from A where a. age $>A L L$ (select B. age from B
Ans (3) Eno. of tuples retumed] where Bename $=F^{\prime}$)

$$
\text { Cf }) \times 1 \times 89 \times R \times 1 \& \times 2100 \times \times 9 k
$$

Correlated Nested Queries:
Exists: - reticons true only if Inner Query not empty. Exicts(Immer Query Result)
s -rect livid from 12
(0) from catrilog C, (5)
(4) where Exists Cselect $\%$ from parts p
where p.pid = c.pid and?

Bels 1 - Take st tuple of catalog \& then ferccute imper query, in this case cid $1 / 1$. (been plaza 2 an tuples form inner query satisfies, \& hence set is not null exists rectums true, c. sid $=p 1$ is o / p.
\#2. Take and tuple of caters ${ }^{2}$ repeat step 1 thin time inner queer results in empty set $\&$ hen "e exists returns folds
(4) 52 is nor $01 p$.
aten 3:- Take Bro tunic (oobpeat
CB:

correlated n ?ed query takes mare time to execute than indiedenent queries.
Q. Self Ca sid
catalog C1
NOT ExisTs (Select p bid from parts b

$$
\geq 1 \text { (maybeall) }
$$

(a) sid of suppliers who supply some parts
(b) " " " " " proper subset of parts.
(c) " $" n \quad "$ all parts.
(d) " " " " do not supply any part:
for this we have to differentiate blew 4 options, take data accordingly

Sid	$p i d$
$s i$	$p 1$
$S i$	$p 2$
$S 1$	$p 3$
Sn.	$p 1$

D
RId
PI
p
p^{3}

For above problem
(a) $\rightarrow \mathrm{S}_{2}, \mathrm{~S}_{2}$
(b) $\rightarrow \mathrm{S}_{2}$
(c) $\rightarrow \mathrm{SI}$
(d) $\rightarrow \varphi$
the answer comes out to be (C)
Comparison witt $N O L L$:-
Null: Unknown of urexidoesn't exist
Null is non-zero \& no two NULL's are equal.

\Rightarrow Null is random ASCII characters Assigned DBMS.

Eid's which have no passport
Select cid
from emp
where ppono is NULL;
is/ is NOT: Compare with NULL values.

Comparison with Regular Expression:-
$\%$ ' $\Rightarrow 0$ or more characters
'_' \Rightarrow exactly any one character

- Names startswith ' D ' \& ends with ' A ' \& atleast 5 characters

$$
D \% \div \% \div A
$$

- Name starts with 'R' :- 'R\%'
- Name starts with ' A _, \& ends with ' B ' atleast 6 characters. for this use escape character $\%$, ' $A / \ldots \% \ldots /$ - B^{\prime}.
Like/ Not Like:-
Compare with regular expression
select shame From stud where snandeleIRE ' $D \ldots \% A^{\prime}$;
Forezgon Key :-
 Referencing Rem.
* Deletion of (S $1, A, Q)$ cant be done before deletion of details of
Refers sid shame login
Rel

51 in enrolled table.
\& (S4,c,@) can be deleted.

Foreign key is a set of attributes that references primary key or alternative key of the same table or some other table.
references
PK
or FR
alternative key

Emp | $E 10$ | Enate Subtly |
| :---: | :---: |
| $E 1$ | $E 2$ |
| $E 2$ | Nor |
| $E 3$ | $E 2$ |
| $E 4$ | $E 3$ |
| $E 4$ | E |

We cart insert E6 as subID

SupID is the foreign key referencing EID of the same rein.
Refrential Integrity Constraints
Referenced Rel:- [student]
(i) Insertion: - No voilation
(ii) Deletion : - May caus voilation
(a) ON DELETE NG ACIION:- (if yoitation refrential int egrity vollation occurs because of deletion from referenced rein., the corresponding deletion is protribited).
(b) ON DELETE CASCADE:-
corresponding
Foreign If referential integrity voilation occurs, tuples are deleted from both referenced rein. \& referencing rein.
Cfrom above example of emp, if we delete E2, then SupID with E2 are also deleted, SO E1 \& E3 are also O deleted of then we delete SupID with values $E 1 \& E 3$, \therefore E4 is delete, so complete table is deleted.)

(c) ON DELETE SET NULL:

- Deletion takes place only when Foreign key is allowed to have NULL values, otherwise deletion doesn't take place.
- Deletion is allowed from referenced rein only if corresponding Foreign Key attribute is allowed to have NULL values
- If foreign key is a bart of primary key OO NOT NULL attribute ON DELETE SET NULL = ON DELEIE NO ACTON. ON DELETE SET NULL on emp table:- when we try to delete tuple with eid $=E 2$. - table:-

(iii) Updation: - (Referenced Attributes Sedation means Updation:- (Referenced Attributes updation of primary key of (May Cause voitation):

$$
\div
$$ can didats key which is referenced (a) ON Update NO ACTION. if cont delete. (b) ON Update OASCADE \rightarrow if causes volition, update

(c) ON update the foreign key to new value. \rightarrow if causes voilation, then update F.K. to NULL C if F.K. Can be set NULL) 4 degenrates to ON Update No Action when E.K. cant be set NULL.

2] Referential Integrity Constraints for Referencing
rein.
(a) Insertion:- May Cause voilation.
(b) Deletion:- No voilation
(c) Updation:- (Referencing Attribute Update)

May Cause voilation.

If child ret (referencing reIn.) operations causes voilation then corresponding operation is restricted.

Cate
02.09 .12

A	B
2	4
3	5
5	2
9	2
6	7
7	6

A: Primary key
B: FK Referencing to A (ON DELETE CASCADE) if Tuple $(2,4)$ is deleted
Q. R(ABC) S(DE)
' C ' is a foreign key references relation S '
which of the following RA produce always empty result.

1. $\pi_{D}(S)-\Lambda_{C}(R)$
$2 \pi_{C}(R)-\pi_{D}(S)$

$$
\therefore \begin{aligned}
& P K-F K \neq \varnothing \\
& F K-P K=\varnothing
\end{aligned}
$$

Q.

Book (Title, Price)

- No two books are sanseraice.

What is the old of the following SQL query?
Select B. Title From Book B
where (Select count (*)
from Book
Where T. price $>B$. brice) <5.
(a) Titles of (as most expensive books
(b) Titles 5 " "
(c) Pate 4 th "
(d)"

* Toget the most expensive book we put ${ }^{\prime} 0^{\prime}$ in place of ' <5,
* To get $4^{\text {th }}$ most expensive book we put ' $=3^{\text {' }}$ in place of ' $<5^{\prime}$.
A To get least expensive book we put T.price < B. price.

Transaction \& Concurrency Control:-
Transaction:-
Set of logically related operations to perform a unit of work.

- Read (A): Accessing the dataitem from DB to MM(programmed) variant
- Write (A) : Updation of Dataitem into DB.
-Dataitem : DB resource:
- record
- block
- table

$$
-D B
$$

e. . $\mathrm{R}(\mathrm{A})$
$A=A+10$ - This updation takes place in main memory.
$W(A)$ UPdated into the database.
$W(B) \rightarrow$ Setting of Dataitem Directly into Database irrespective of previous value chin a write operation) [ie. wo reading the
data, we just ovegurite the previous data.]

- Commit :- Transaction executed success fully (transaction committed means Transaction Terminated.)
- Integrity of the Frons, Trans should preserve ACID properties

A: Atomicity: Execute all operations or none of them. egg. Trans 500 Rs from A to B.

Failure Reasons:-
(1) Power Failure
(2) S/w Crash
(3) H/W Crash (DISK CRASH)
(4) Concurrency contra). of OBMS/OS may kill Transaction.
(1) $\left(T_{2}\right)$ ir deadlock

Recovery Management Components:-

- Rollback the transaction or (Abort):-
it is the process of undoing the modification that were done int il failure prositiompoint.
- Transaction $\log :-$
\rightarrow Activities of transaction
T. \log

A. $\mathbf{c} / \mathrm{d}=1000$
A. $\mathrm{ne}=\mathrm{F}=500$
\vdots

2 Maintained by
recovery management jog file component until [this is stored in $\begin{gathered}\text { commit/rollback. } \\ \text { secondary }\end{gathered}$
Transaction \log is required
to perform rollo $\mathrm{ck}_{\mathrm{ck}}$ ob?
Durability:-
Transaction should be able to recover under any case of failure.

- RAID architecture

CRedundant Array of Independent Disks s:-
-RAID-O:-NO redundant disk. (Nigh possibility of failure).

- RAID-1:- Image Disks (same on jog files are maintained in independ nt Discs) by independent we mean that by fail of ope risk, other disk doesn't faitco have no effect due θ ils failure.

A If Transaction failed before Commit then Atomicity \& Durably comes into the picture.

Isolation:-

- Two or more than two transactions are executiong concurrently.
$T_{1}(A)$: ran $500 R_{s}$ from A to $B . r_{1}(A) w_{1}(A) r_{1}(B) w_{1}(B)$
T_{2} : trons display total of $A, B \quad r_{2}(A) F_{2}(B)$
Schedule:-
Time order sequence of two or more transaction.
- Serial schedule: - After 'commit' of one transaction, only then start the other transaction.
- Concurrent Schedule:- Interleaved execution or simultaneous execution of two or more transaction.
Serial Schedule:-

$n!\rightarrow$ serial schedules are possible with ' n ' trangacions.
- Every Serial Schedule is consistent.
- Throughput of system is very less (boos resource utilization).

Concurrent Schedule:-

* This read $R_{2}(A)$ is different from and Serial schedule's $R_{2}(A)$ because $R_{2}(A)$ of $2 n d / s . s$. is reading from initial value of $D B$.
- Throughput increases.
- Inconsistent Schedule.
- Concurrent exec of 2 or more than 2 transaction may result in in consistency:
To resolve this issue, we use concurrency control component.
- Concurrency control component is responsible for avoiding inconsistent concurrency control.
* For the schedule to be consistent, the concurrent schedule behaviour must
- It concurrent Schedule (Non-Serializable) because it is reading $R_{2}(A)$ after updation $\& R_{2}(B)$ before updation which is not happening in any Serial Schedule.
- and concurrent $\left\{\right.$ Schedule (equal to $T_{2} T_{1} \rightarrow T_{2}$ Serial Schedule).

T_{1}	T_{2}	Equal to
$R_{1}(A)$	$R_{2}(A)$	$T_{2} \rightarrow T_{1}$ Serial Schedule.
$h_{1}(A)$	$R_{2}(B)$	(Serializable Schedule).
$R_{1}(B)$		
$W_{1}(B)$		

Serializable Schedule:-
Concurrent execution of 2 or more transaction should be equal to any serial schedule.
(Schedules are equivalent \¬ equal, because order of execution differs.)

Isolation says that:-
A Concurrent schedule should be ferifirable schedule.
(2)
$T_{1}: R_{1}(A) W_{1}(A) R_{1}(B) W_{1}(B)$
$T_{2}: R_{2}(A) R_{2}(B)$
How many concurrent schedules are possible.
ins: ${ }^{6} C_{4}$

General formula:-

- T_{1}, T_{2} Transaction consists m, n operations each no. of concurrent schedules $=(m+n) \mathrm{C}_{n}$
- T_{1}, T_{2}, T_{3} Transaction consist m, n_{3} l operations each no. of confluent s schedules $=m+n+b C_{m}{ }^{n+p} \mathrm{Cn}^{n}$

All Schedules serialtable serial

A Serial Schedules are Serializable, but not vice versa.
AE
all schedules
(serial

- Every. Serializable Schedule is not serial but result of serializable schedule is equal to any serial schedule.
Consistency:-
Before \& After execution of transaction $D B$ should be consistent. Criteria for consistency:-
- Schedules should be recoverable.
- schedules should be serializable.
(Boon concurrency control f recovery management is used in consistency property.)

- The schedule is not equivalent ito $T_{1} \rightarrow T_{2}$. because
- The schedule is not equivalent to $T_{2} \rightarrow T_{1}$.
Q. $\frac{I_{1}}{R(A)} \left\lvert\, \begin{aligned} & T_{2} \\ & R(B) \\ & R(C) \\ & \\ & \end{aligned}\right.$

I_{1}	I_{2}
$R(A)$	this B must be
$H(B)$	$R(B)^{2} \quad$ read initially from
	$H(B) \quad D B_{\text {, }}$ not overnoitte

A Every Read should be same \& every final vipdation of data item should be same.
Q. $T_{1} \mid T_{2}$ because of $R_{2}(B)$, the schedule is not equivalent
$W_{1}(B) \left\lvert\, \begin{aligned} & R_{2}(B) \\ & W_{2}(B)\end{aligned}\right.$ to serial schedule T_{2}.
$\frac{\left.T_{1}\right|_{\frac{T_{2}}{2}} ^{R_{2}(B)}}{h_{2}(B)}$ In original schedule B is finally written by T_{2} $\left.R_{1}(A) r_{2} C B\right)$ but in Schedule $\rightarrow T_{1} B$ is finally written by $W_{1}(B)$ T_{1}, hence rot equivalent.

$$
T_{2} \mapsto T_{1}
$$

Problems because $6 f$ concurrent execution :-
(1) RW problem [write after read problem] "Transaction T_{2} updates data item A which is axready read by uncommitted
Transaction T_{1}, RCA)
(simpaltaneous Read Write operations).

T_{1}	T_{2}
$R(A)$	
\vdots	$W(A)$

$\left.\begin{array}{l|l}T_{1} & T \\ \hline R(A) \\ \text { Comm an } & \\ & H(A)\end{array}\right\} \rightarrow$ not simultaneous
example:-
Library $D B$:
A: no. of copies of DBMS Text book.

Let $A=10$ initially
(This problem occurs because of simultarme da write $D p^{n}$.)

* A problem is said to be read-write problem only if
(a) simultaneous R/W op should exist.
(b) schedule is non-serializaple.

Schedules having read write on may be serializable.

(2) Write-Read Problem:- \{Read after write problem\} Transaction T_{2} reads data item A which is updated by uncommitted transaction T_{1}.

I	T_{2}
$\vdots(A)$	$R(A)$
Commit	

\(\left.\begin{array}{c|c}T_{1}(A) \& T_{2}

commit \& R(A)\end{array}\right\}\)| Not |
| :--- |
| simultaneous |
| WR operations. |

Writ

* A problem is Norite Read problem :-
(1) Uncommitted read operation should exist
(2) Non-serializable schedule.

$$
\begin{aligned}
& \text { e.g } \\
& \left.\frac{T_{1}}{R_{1}(A)}\right|^{T_{2}} \rightarrow \text { Non-Seriatizable } \\
& {\left[H_{1}(A) \mid \overrightarrow{\left.R_{2}(A)\right]} \rightarrow\right. \text { Uncommitted redd }} \\
& R_{1}(B) \\
& R_{1}(B) \\
& R_{1}(B) \\
& \text { So, write-read problem exist. }
\end{aligned}
$$

$$
\left.\frac{T_{1}}{R_{1}(A)} \right\rvert\, T_{2}
$$

it is possible in in non? iseriglicable
Lost update Problem:-
It m is possible even though the schedule is serializable.
$\left.\underset{A=10^{2}-W(A)}{T_{1}}\right|_{W(A) \rightarrow A=20} ^{T_{2}}$ initial value of $A=\varnothing 1020$
when T_{1} fails, roll back manager uses \log of T_{1} to roll back, so the updates done by T_{2} are lost.
Transaction T_{1}
fails
Lost update problem is possible if simultaneous Write-write op ${ }^{n}$ exists.

Classification Sonedule
Recoverábility D serializability

* Schedule is said to be consistent only if schedule is strict recoverable schedule, as well as serializable.

Recoverability Classification
(1) Irrecoverable Schedule:-

- Rollbacking of committed transaction is irrecoverable.
- Irrecoverablity may be possible only if uncommitted reads exist.

| T_{1} | T_{2} |
| :--- | :--- | :--- |
| $W(A)$ | $\left(T_{2}\right.$ is reading A written by fromsaction |
| $\left.T_{1}\right)$ | |

failed
π If transaction T_{2} reads the data item A which is updated by $T_{1} \& T_{2}$ committed before commit or rollback of T_{1}, then schedule is said to be irrecoverable.

T_{1}	T_{2}
$W(A)$	$R(A)$
C / R	Commit

$$
\begin{array}{l|l}
T_{1} & T_{2} \\
R(A) & W(A) \\
R(A) \\
R(A) & \left.\begin{array}{l}
\text { n }
\end{array}\right\} \begin{array}{l}
\text { no } \\
\text { uncommitted } \\
\text { red } \\
\text { recoverable. }
\end{array}
\end{array}
$$

Recoverable Schedule:
If transaction T_{2} reads data-item A which is updated by uncommitted tremsaction T_{1}, then commit ops of T_{2} should be delayed until comit or roleback of T_{1}

Cascading Rollback Problem:-
failure of one transaction results rollback of set of other transaction.

\} \rightarrow Recovergablel

* If F_{1} fails, then $t_{3} n$ we have to rollback transaction depending on T_{1} which is T_{2} it then we have to roll back transactions. depending on T_{2} which are $T_{3} \& T_{4}$. Wastage of CPU time \& $1 / 0^{32}$ access.

CascadelessRollbacking Recoverable Schedule:

- Recoverable schedule
- No cascading rollbacks.
\(\left.\begin{array}{l|l}\frac{T_{1}}{W(A)} \& T_{2}

C(R \& R(A)\end{array}\right\}\)| Uncommitted Read |
| :---: |
| op or are not allowed. |
| for Cascadeless Roll backing. |

egg. T_{1} This schedule is cascadeless, rollbacking

$R(A)$	$W(A)$
$W(B)$	
$W(C)$	
$C 1$	
$H(B)$	
	$R(C)$
$C 2$	

Cascadeless Rollbacking Recoverable Schedules ar 6 notfree from:free from:-

1. Why problem
2. WR problem
3. RW problem
4. Cascading Rollback
5. Lost update

Strict Recoverable Schedule:-

If transaction In updates data item A, other transaction T_{2} is not allowed ta read or write data item A until commit
or rollback of T_{1} not free from:-
RW (problem
free from:-
Wh,WR, lost update, cascading rollback problem.
$W_{1}(x)$
Cl

$$
\begin{array}{cc}
W_{2}(2) & \\
W_{2}(y) & W_{3}(y) \\
c_{2} & c 3
\end{array}
$$

Serializability Classification:-
[1] Serializability Classification
(i) Conflict Serializable schedule:-

Conflict
Pairs:- (i) $R_{i}(A) R_{j}(A)$:- Non-conflict pairs
(ii) $R_{i}(A) W_{j}(A)$: Conflict Bair

(iii) Wi (A) Rain) Conflict Pair
(iv) $W_{i}(A)$ Li (O : Conflict pair
(v) Ri $(A) X_{i}(A), R_{j}(B) / W_{j}(B)$ i Nan-conflict Pai

Pair of Opn is said to conflict only if "a least one write op" f (ii) on same data item.
(iii) on diff. transactions.

Conflict Equal Schedule:-
If conf' Sj results after swapping of non conflict pains in S_{i} then $S_{i} \& S_{j}$ are said to be conflict equal schedules.

T_{1}	T_{2}
$R(A)$	
$W(A)$	$R(A)$
$R_{1}(B)$	$R_{2}(B)$
$N(B)$	

T_{1}	T_{2}
$R(A)$	
$W(A)$	$R(A)$
$R_{1}(B)$	$R_{2}(B)$
$W(B)$	
$S 2$	

Si conflict equal to 52.

S1 Schedule should be
: Conflict equal should be any serial schedule.

- Any One of the serial schedule should be conflict equal to given schedule. [only then we can say given schedule is Ci.e after swapping non-conflict, pairs, we must get a, ana me serial schedule.

Precedence Graph
$G=(V, E)$
vertices: Transactions of the schedule.
Edges:- Conflict pair precedence order.

$$
\left(\begin{array}{r}
\left(T_{i}\right) \times\left(\begin{array}{ll}
W_{i} & w_{i}(A) \\
w_{i}(A) & w_{j}(A) \\
R_{i}(A) & R_{j}(A) \\
R_{j}(A)
\end{array}\right.
\end{array}\right.
$$

Testing Condition:-
(a) if precedence graph cyclic then not conflict Serializable Schedule.
(b) if precedence graph is acyclic then it is . lick serializable.
Equivalent serial schedule is based on topological order of acyclic precedence graph.
Topological Order:-
(1) Visit Vertex (V) with indegrec $0^{\prime} O^{\prime}$ \& delete ' V ' from G.
(2) Repeat (1) until.G becomes empty.

(11) $\rightarrow\left(T_{2}\right)$

$$
\left(C_{1}\right)\left(1_{4}\right)+\left(T_{2}\right) \rightarrow\left(T_{3}\right)+\left(T_{5}\right)
$$

* Na of conflict coequal serial schedules is equal to no. of topological orders of acyclic precedence graph.
Q. $81 \% x_{3} 49_{3} 0$

$$
\begin{aligned}
& T_{1} \\
& r_{1}(x) \\
& w_{1}(x)
\end{aligned}
$$

| $\gamma_{1}(y)$ | $\gamma_{2}(z)$ |
| :--- | :--- | | $w_{3}(z)$ |
| :--- |
| $r_{3}(z)$ |

$w_{1}(y)$	$r_{2}(y)$
r_{2}	$w_{2}(y)$
	$r_{2}(x)$
	$r_{2}(x)$

(13)
(7) $\left(T_{3}\right)$

conflict Serialionle
S2:

$W_{1}(B)$
$W_{1}(A)$
s3: $\quad T_{1}$

$$
\begin{array}{ll}
\gamma_{1}(A) \\
r_{1}(B) \\
h_{2}(C) \\
r_{3}(C)
\end{array}
$$

1%
(Q)
(T_{3}

$$
r_{2}(B)
$$

cycle
\therefore not conflict
Serializable.

S4: T_{1}

$$
r_{1}(x)
$$

$$
\gamma_{3}(2)
$$

$$
w_{1}(x)
$$

$$
w_{3}(y)
$$

$$
\gamma_{2}(2)
$$

$$
w_{3}(z)
$$

$$
\gamma_{1}(y)
$$

$$
w_{1}(y)
$$

 not serializable.
$W_{3}(B)$

Non-Conflict Serializable.

$R_{4}(A)$
(1)
(11) $\left.-6 T_{2}\right)-\left(T_{3}\right)-\left(T_{4}\right)$
(T4) $\rightarrow\left(T_{1}\right)-\left(T_{2}\right)-\left(T_{3}\right)$

Equality conan:-
(Q)Every read should be same.
(2) Last updation must be done by same Transaction
Q.

P. T_{1}	T_{2}	T_{3}
$R_{1}(A)$	$W_{2}(A)$	
$W_{1}(A)$		
		$W_{3}(A)$

Not conflict serializable
Q.

T_{1}	T_{2}	T_{3}
$W_{1}(A)$	$W_{2}(A)$	
		$W_{3}(A)$

(Si)

T_{1}	T_{2}	T_{3}
$R(A)$		
$W_{1}(n)$	$W_{2}(A)$	
		$W_{3}(n)$

Serializable schedule because it is equivalent to a serial ofredule) Serializable
(52) $T_{1}, T_{2}, T_{3} \rightarrow$ serial serializable schedule. 51 not conflict equal $0 \$ 2$ 51 equivalent to sp

(si)

$$
S_{1}=S_{2}
$$

$S_{1}=S_{2}$
but $S_{1} \& S_{2}$ are not conflict equal schedule. only sufficient

* if (acyclic precedence graph) else conflict serializable \& hence serializable necessary
not conflict serializable \& (may or may not be serializable).
View Serial izable Schedule Testing Condo.:if CVSS conan)
else Vieg serializable $\&$ hence Serializable else
stat view serializable \& monk non-serializable)
Conan \rightarrow predicate if L is f rue, R is true

$$
\text { Conan } \leftrightarrow \text { Predicate }\left[\begin{array}{l}
\text { sufficient \& } \\
\text { necessary. }
\end{array}\right]
$$

Trim Serializable Schedule
View equivalent schedule should be any serial schedule. Cone of the serial schedule should be view equivalent to the given schedule.)
View Equivalent Schedule Condo:-

- 51252 are view equivalent my if
(I) If transaction Ir reading datritem ' A, from initial DB in S1, then S2 should also in δ_{2}, Trans T_{i} Should read dataitem A from initial $D B$ only.

because in $S_{2} R(B)$ reads B^{2} after $W(B)$ $S_{1} \neq S_{2}$
(2) If transaction T reading dataitem A which is updated by if in S_{1}, then Transaction T_{i} should read ' A ' which is updated by $\pi_{1} T_{j}$ ' in S_{2} also.

(3) If transaction T_{i} update of dataitem 'A, in S_{1}, then transaction T_{i} should aviate' dataitem ' A ' in S_{2} fialso.

* Two schedules are equal only if b all 3 condo are satisfied.

Date
\qquad
08.09.12

Serializability:-
The schedule is conflict serializable \rightarrow Acyclic Precedence Graph [if graph is cyclic, then it is, Tosffict serializable] If graph is acyclic, we can't say anything.

This can make 6 serial schedules

1. $T_{1} \rightarrow T_{2} \rightarrow T_{3}$
2. $T_{1} \rightarrow T_{3} \rightarrow T_{2}$
3. $T_{2} \rightarrow T_{1} \rightarrow T_{3}$
4. $T_{2} \rightarrow T_{3} \rightarrow T_{1}$
5. $\quad T_{3} \rightarrow T_{1} \rightarrow T_{2}$
6. $T_{3} \rightarrow T_{2} \rightarrow T_{1}$

Final A is finally written $b y \pi_{1} \&$ not any one else,
Trite $\therefore T_{1}$ can be anywhere.
$\star \quad B$ is finally britten by T_{3}, but is also written by $T_{1} \downharpoonright T_{2}$.
$\therefore T_{3}$ must be at the end.
$\downarrow R \Leftrightarrow\left\{\begin{array}{l}\left(T_{1} T_{2}\right) \rightarrow T_{3} \\ T_{1}: H_{1}(A) \quad T_{2}: R_{2}(A) \quad T_{k}: \text { Write (A) }\end{array}\right.$
quence $\int T_{1} \xrightarrow{T_{k}} T_{2} T_{k}: \phi$ \{no other transac. updating $\left.A.\right\}$
$\therefore T_{1} \rightarrow T_{2}$ Gk must be Φ.

nitial A Dat a Item	Initial Read	Write	
Read	A	\ldots	T_{1}
B	T_{2}	T_{1}, T_{2}, T_{3}	
	$T_{2} \rightarrow T_{1}$		

$$
\begin{gathered}
T_{2} \rightarrow T_{1} \\
T_{2} \longrightarrow T_{3}
\end{gathered}
$$

\qquad
\qquad
as
$T_{1} \rightarrow T_{2} \& T_{2} \rightarrow T_{1}$
\therefore there is a cycle,
\therefore it is not serializable.
A also not conflict serializable.

* A

$$
\begin{aligned}
& \text { if } T_{i} \rightarrow T_{j} \& J_{j} \rightarrow T_{i} \\
& \text { Non-serializable } \\
& \text { schedule. }
\end{aligned}
$$

Q.

T_{1}	T_{2}	T_{3}
$W(A)$		$R(B)$
	$R(B)$	
	$R(A)$	
	$W(B)$	$W(B)$
		$W(B)$

Final $\star T_{3}$ must be dons at the end.
write + no constrainst as such for A
it is non-sericlizable.

WV:- $\quad \begin{aligned} T_{1} & T_{k} \\ \& & T_{2} \\ T_{k} & =\varphi\end{aligned}$ $\& \begin{aligned} & T_{1} \rightarrow T_{2} \text { it is } \\ & T_{2} \rightarrow T_{2}\end{aligned}$ non-serializable.
\qquad
\qquad

Final of A by $T_{3} \&$ also by $\left.T_{1}, T_{2}\right)$
Write - Γ_{3} must be at the end.
of B by T_{1} only y.

$$
\therefore \text { no constraint. }
$$

WR:- No HR Opn.
$\left.\begin{array}{l|lll}\text { Initial } & A & \frac{T R}{T_{2}} & \text { white } \\ T_{1}, T_{2}, T_{3}\end{array} \therefore \begin{array}{l}T_{2} \rightarrow T_{1} \\ \text { Read:- } \\ T_{1} \rightarrow T_{3}\end{array}\right\}$ of A

$$
\begin{aligned}
& \therefore T_{2} \rightarrow T_{1} \& T_{3} \text { ores }\left(T_{1}, T_{2}\right) \rightarrow T_{3} \\
& \therefore \text { serializable. }
\end{aligned}
$$

$W_{1}(B)$

$$
W_{2}(B)
$$

$$
W_{3}(B)
$$

$H_{4}(B)$
Identify view equal serial schedules.
(1) Final write:-
of $A \rightarrow$ none (no constraint,
of $B \rightarrow$ by $T_{4}:\left(T_{1}, T_{2}, T_{3}\right) \rightarrow T_{4}$
(2) $W R:$ no $W R$ op n.
(3) Initial read:-

	$I R$ Write
A	$T_{1,} T_{2}, T_{3}, T_{4}$
B	$\Gamma_{1}, T_{2}, T_{3}, T_{4}$

\therefore no constraint by IR.

$$
\therefore \frac{\left(T_{1}, T_{2}, T_{3}\right)}{\frac{!}{l} \text { combinations }=6} \rightarrow T_{4}
$$

$\therefore 6$ ser equivalent to 6 view serial schedules.

\qquad
\qquad
view seriaficolle

- Schedule is correct only if :-
(1) Serializable \&
(2) strict recoverable.

$\frac{I_{1}}{}$	T_{2}
$R(Q) R(P)$	$R(Q)$
$R(P) R(Q)$	$R(P)$
if $(P==0)$	If $(Q==0)$
$\{Q=Q+1$	$\{P=P+1$
$W(Q)\}$	$W(P)\}$

Non-Serial interleaved execution.
(a) Serializable.
(b) Not Conflict SS. (but not totally correct, as it is
(c) Not S.S. but vie@ serializable Uso not view seribiliable).
(d) Precedence graph can't be drawn.

A Precedence graph can be drawn always, \therefore (d) is always false.
$\star \quad T_{1} \rightarrow T_{2}: P=0$

$$
\delta f Q=\varnothing 1
$$

$\begin{aligned} \star T_{2},-P & =\varnothing 1 \\ Q & =0\end{aligned}$

Concurrency Control Protocol:-

- Locking
- Timestamp Ordering

Locking Protocols:- to
Lock:- Variables used identify the status of dataitems.

Transaction

$$
\overline{l_{1}(A) \leftarrow \text { grants }}
$$

$$
R_{1}(A)
$$

$$
H_{1}(A)
$$

1

$$
\begin{aligned}
& U_{1}(A) \longleftarrow \text { unlocks }
\end{aligned}
$$

Time $\{$

$$
l_{1}(B) \leftarrow \text { denied }
$$

$$
\begin{aligned}
& l_{1}(B) \subset \text { grants } \\
& R_{1}(B) \\
& L_{1}(B) \\
& U_{1}(B)
\end{aligned}
$$

Shared Exclusive Locking:-
Shared [S]
Lock:- [S] $4(A) \rightarrow x$ only, t no write permission.
[x]
Read/Write Lock

$$
T_{1}
$$

$\overline{X(A)} \rightarrow$ exclusive lock on A $R(A)$ Transaction T_{1} is allowed to W(A) both read f write.
\qquad
Lock Compatible table:

Shared lock :-s Exclusive lock :-X

A To ensure Serializability, non-sorializable schedules must not be allowed to execute.

A Two Phase Locking:-
Transaction iT is allowed to request lock on any dataitem only if no unlock op is performed by T.

T_{1}	T_{2}
$R(A)$	
$W(A)$	$R(A)$
$R(B)$	$R(B)$
$W(B)$	

* If schedule is non-serializable, then not allowed by 2 PL .
Q.

T_{1}	T_{2}
$R(A)$	
$N(A)$	$R(A)$
$R(B)$	
$W(B)$	$R(B)$

check if it is non -serial

- This is serial schedule $\left(T_{1} \rightarrow T_{2}\right)$.

\therefore allowed to execute by 2 PL .
\qquad

Q

check for its serializability :-
Final. A by T_{3}

$$
\begin{aligned}
& \begin{aligned}
& \\
&\left(T_{1}, T_{2}\right) \rightarrow T_{3} \\
& b y T_{2} \\
& r_{2}\left(T_{3} T_{3} \rightarrow T_{2}\right. \\
& \Rightarrow T_{2}-T_{3} k \cdot T_{3} \rightarrow T_{2}
\end{aligned} \\
& \text { mon-serializable. }
\end{aligned}
$$

$$
\text { Initial }-\frac{1}{\text { IR }} \text { write }
$$

$$
T_{2} \rightarrow T_{1} \rightarrow T_{3}
$$

Serializable.

Lock upgrading technique:-

- Read op should allow only shored lock.
- Shared lock can be upgraded to exclusive lock if transaction has not done any unlock Op n.

T_{1}	T_{2}
$S A)$	
$R(A)$	$S(A) \rightarrow$ This $S(A)$ is allowed because
	$R(A)$
$X(A)$	$U(A)$
$X(A)$	
$U(A)$	
$U($ has share lock on A.	

Q.

T_{1}	T_{2}	T_{3}
$R(B)$	$R(A)$	
$W(B)$		
		$R(A)$
	$R(B)$	$W(A)$
	$W(B)$	

2 PL:-
Ensuing serializability.

* if schedule is allowed to execute by 2PL then schedule is conflict serializable bat not vice-iversa.

(Ti) ${ }^{?}\left(T_{2}\right)$
not conflict serializable ${ }_{2} \mathrm{pL}$ also not allowed by $2 P L$.
if schedule is not conflict serializable then schedule is not allowed to execute by 2 PL.
\qquad
\qquad
* If Schedule is allowed to execute by 2 PL , then it is always serializable.
* Equivalent Serial schedule is based on. order of lock points.
egg.

last lock points

$$
\text { of } I_{1} \& T_{2}
$$

\therefore Equivalent S S. $-T_{1} \rightarrow T_{2}$ (acc to the order of lock points.)

$f\left[\begin{array}{ccc}T_{1} & T_{2} & T_{3} \\ & *\end{array}\right]$ equivalent $S . S: T_{2} \rightarrow T_{3} \rightarrow T_{1}$

- Serial Schedule.
\qquad
\qquad

Two phase locking prato col:-

1. $2 P L$ restriction
(May cause deadlock).

Dependency Graph

2. $2 P L$ restriction may cause starvation.

* All the transactions will be in deadlock, how ever one transaction can be starved.

3. May cause ir recoverability.
\qquad

- 2PL + Strict Recoverability Condor.

It states that:- Basic $2 P \mathrm{PL}$ \& every exclusive lock held until commit (rollback.

- Strict 2 PL:-
\rightarrow Ensures serializability (equivalent serial schedules based on lack paints.)
\rightarrow Ensures strict recoverability.
\rightarrow Deadlocks, starvation still possible in, strict $2 P L$.

2. | T_{1} | T_{2} |
| :---: | :---: |
| $R(A)$ | $W(A)$ |
| $R(B)$ | $W(A)$ |
| $C l$ | $C(B)$ |

(IT) $\left.+\mathrm{T}_{2}\right) \times 5$
CSS.
\& also serializable $\left(T_{1}, T_{2}\right)$.

\qquad
Multilevel Granularity Protocol:-
(Tree Protocol).

Granularity position of lock (data item
size)
(R_{12})
High Level Granularity \{lockingat file level\}
eg. \bar{T}_{1} : update $R_{1}, R_{2} \ldots, R_{6}$:- Lock (C)

$$
\begin{aligned}
& T_{2}: \text { update } R_{2} \& R_{12} . \quad \therefore-L g\left(l_{1}\right) \text { \& } \text { lock }\left(f_{2}\right) \text {. } \\
& \text { Advantage }
\end{aligned}
$$

- Advantage:-

Lock maintainence table consists of is of locks. leas to maintain)
\rightarrow Dis-advantage:- \{loxiveg attzecordever) Less (ix) incl- songourency level.

Low level Gronifarity:-

$$
\begin{aligned}
& T_{1}: L_{1}\left(R_{1}\right) L_{1}\left(R_{2}\right) S_{i}, L_{1}\left(R_{6}\right) \\
& T_{2}: L_{2}\left(R_{2}\right) L_{2}\left(R_{12}\right)
\end{aligned}
$$

Advantage:- More conarrecency level. Dis advantage:- Complex to manage lock. compatible table (more no of locks.).
Multilevel Granularity:-
Locking can be allowed at any level.
$T_{i}: L_{1}\left(F_{1}\right)$
$I_{2}: L_{2}\left(R_{2}\right) \ell \quad L_{\&} C_{4} C_{2}\left(N_{1}\right)$
 (R_{2} is a part of it)

| T_{1} | T_{2} |
| :--- | :--- | :--- |
| | $x_{2}\left(R_{2}\right)$ |
| denied $\left\{\begin{array}{l}x_{1}\left(T_{1}\right) \\ \text { using }\end{array}\right.$ | |

using BFS for checking whether it con be granted on not lie. check ing whether any of its desert dent is locked time talack F_{1} exponential. lock R2 as well i, but it is already locked before, $\therefore \mathbb{x}_{1}\left(F_{1}\right)$ is derived.]
Intention lock:
A node N locked by transaction T in intention mode means that any descendants of N con request direct lock by transaction I.

Intension Shared Lock:- [1S] A node N locked by transaction T_{2} in $4 S^{\prime}$ mode means that any descendents of N can request for shared lock' by transaction T.
\qquad

T_{1}	T_{2}
$I S(A)$	$S(A)$
$S(B)$	$R(B)$
$R(A)$	$R(B)$
$R(A)$	
$R(A)$	

If we applied IS on a node, then to read any descendent, we need to write shared lock explicitly like in I), but we can directly read descendants if we apply shared lock on A clime in T_{2}).

Intension Exclusive Mode (IX):-
A node N locked by transaction T in IX mode means that any descendant of N can request for shared/exclusive mode by transaction T.

Shared - Intension Exclusive $[51 \times]$:-

Multilevel Granularity Protocol (conditions):-
(1) A mode N can be locked by transaction 1 only if parent of N is already locked.
(2) A node N can be locked by Transaction T in S, IS mode only if parent of N is: already locked by IX or IS.
(P) IS IX
(1) S, IS
(3) A mode N can be locked by Transaction T in $x, 1 x, S 1 x$ mode only if parent is already locked by ixgor six mode by Transaction T.
(P) $\operatorname{lx}_{3} 51 x$
(N) $x, 1 x, S \mid x$
(4) A node N can the request for 10 CK by Transaction only if none of the nodes are un
(5) A node N can be locked by 2 diff. transactions only if both locks are compatible

1.

2.

Intension lock compraibue with Intension lock :-1

3.

(6) A node N can be unlocked by Transaction T only is none of the descendant is locked by Transaction T.
\qquad

Q.
(BB)

P1

T_{1} : Update R_{1}, \ldots, R_{6}
τ_{2} : Ubdate R_{2}, Rir

$$
\begin{aligned}
& 1 x_{2}(D B)\left|x_{2}\left(F_{1}\right)\right| x_{2}\left(P_{1}\right) x_{1}\left(R_{2}\right) \\
& {\left[x_{2}\left(F_{2}\right) \mid x_{2}\left(P_{6}\right) x_{2}\left(R_{12}\right)\right.} \\
& \cup\left(R_{1}\right) \cup \cup\left(F_{2}\right) \\
& \cup\left(R_{1}\right) \cup\left(P_{1}\right) \cup\left(F_{1}\right) \\
& U(D B)
\end{aligned}
$$

$$
\begin{aligned}
& \text {. } 1 x_{2}\left(F_{1}\right) \rightarrow \text { denied }
\end{aligned}
$$

\qquad
Strict Multilevel Granularity Protocol
Same (1)- (6) steps.
(7) Hold exclusive locks until commit.

* Deadlocks \&'Starvation are still possible.

Ime-stamp. Ordering Protocol:-
Time Stamp:- Unique value assigned by OBMS to every transaction in ascending order.

\therefore Older , younger
Read Time Stamp (Q):-
Highest transaction Time stamp value that has Performed $R(Q)$ operation successfully.
A: dataitem

Write fine Stamp (A):-
Highest transaction Time Stamp value that has performed $W(A)$ operation. successfully.

$$
W T S(A)=\varnothing 1040
$$

$\frac{\text { Basic Time Stamp Ordering Protocol:- }}{102030}$ -

T_{1}	T_{2}	T_{3}

Concurrent execution
should be equal to serial schedule based on TS ordering.
this means that acc. to TS ordering $\left(I_{1}, T_{2} \rightarrow T_{3}\right)$.
our concurrent senedule should be equindent. to

$$
T_{1} \rightarrow T_{2} \rightarrow T_{3}
$$

10	20	30
T_{1}	T_{2}	T_{3}
$W(A)$	$R(B)$	
		$R(A)$
	$W(B)$	
$R(B)$		$W(B)$

\longrightarrow This should be equivalent. to $\mathrm{T} \mathrm{CH}_{\mathrm{H}} \rightarrow \mathrm{T}$,
this is not
allowed as
it is read of
B after T_{3}
writes it which
is not happening
in case of schedule $T_{1} \rightarrow T_{2} \rightarrow T_{3}$ \& hence
not equivalent to it, T_{1} is also
rollbacked.

Q. \quad| 10 | 20 |
| :--- | :--- |
| T_{1} | T_{2} |
| $R_{1}(4)$ | $R_{2}(A)$ |

this is equivalent to $T_{1} \rightarrow T_{2}$.

10	20
T_{1}	T_{2}
$R_{1}(A)$	$W_{2}(A)$

10	20
T_{1}	T_{2}
$N_{1}(A)$	$R_{2}(A)$

this is
(i)
this is not similar to $R(A)$ of $T_{1} \rightarrow T_{2}$ \& hence denied of
T_{1} is rollback.
(ii)
$W T S(A)>T S\left(T_{1}\right)$
not similar tow, (A) of $T_{1} \rightarrow T_{2}+$ hance denied \& T_{1} is rollback. (iii)
\qquad

$10=20$
$T_{1} \mid T_{2}$
$W_{1}(A)$
$W_{1}(A)$
C

this is not similar
to $T_{1} \rightarrow T_{2} \&$ hence
denied \& hence
rollback.
(iv)
(1) Transaction T_{1} issues $R(A)$ opp:-
(a) if $V T S(A)>T S\left(T_{1}\right)$ then rall back T.
(b) otherwise (WTS (A) $\leq T S\left(T_{i}\right)$)
allowed to execute $R(A)$ opri. by transaction:
$\left.n T_{1} \& \operatorname{set} R T S C A\right)=\max (\operatorname{RTS}(A)$, TS (T)

(2) Transaction T_{1} issues $W(A)$ operation:-
(a) if $\operatorname{RTS}(A)>T S\left(T_{1}\right)$ then rollback T_{1}.
(b) if $W T S(A)>T S\left(T_{1}\right)$ then rollback T_{1}.
(c) Otherwise allowed to execute $W(A)$ OP ${ }^{n}$ by Transaction T_{1} \&

$$
\text { set } \operatorname{WTS}(A)=T S\left(T_{1}\right)
$$

Q. $\begin{array}{llll}T_{1} & T_{2} & T_{3} \\ \gamma_{1}(A) & & \end{array}$

$$
\gamma_{2}(B)
$$

Hi cc)

$$
\begin{array}{r}
r_{3}(B) \\
r_{3}(C)
\end{array}
$$

$$
W_{3}(A)
$$

which of the following TS orders are
Rollback allowed to execute S using BIS ordering

* if 'S' is conflict S.S. based on Time Stamp ordering then ' S ' is allowed to cerecute by Ts ordering
₹ topological order equal to timestamp ord erg.
Ans:- make precedence graph for problem:-

$$
\begin{aligned}
& \text { (12) the topological } \\
& \text { sequence is:- } \\
& T_{1}, T_{3}, T_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} \text { (a) protocol. } \\
& \int\left(\frac{(a)}{}\left(T_{1} T_{2}, T_{3}\right)=(30 ; 20,10)\right. \\
& =(30,10,20) \\
& =(20,10,30) \\
& =(20,30,10) \\
& =(10,30,20) \\
& \text { (rollback) heck } x \text { fox max }
\end{aligned}
$$

\qquad
\qquad

* if 'S' is not CSS, then. ' S ' is not allowed by BTSO protocol.

(6) T_{1}	$T_{2}(0)$
$R(A)$	$W(A)$
$W(A)$	

* If 'S' is conflict S.S. \& equivalent Serial Schedule (topological order) is not same as TS ordering, then ' S ' is not allowed to execute by BTS ordering protocol.

Option:- $\left(T_{1} T_{2} T_{3}\right)=(30,20,10)$
equal to $T_{3} \rightarrow 4 T_{2} \rightarrow T_{i}$
precedences allowed:- $0_{T_{2}} \rightarrow \rightarrow T_{2}$

$$
\begin{aligned}
& T_{2} \rightarrow T_{1} \\
& T_{3} \rightarrow T_{1}
\end{aligned}
$$

* \rightarrow allowed
(i) because of these $T_{1} \rightarrow T_{3}$ (which are not allowed) $\therefore T_{3}$ is roll back.
(ii) $\mathrm{NOW}, \mathrm{T}_{3}$ is rollback,
carryon with $T_{1} 4 T_{2} \&$ check if T_{1} or T_{2} or both are rollback, now no op h of T_{3} will take pert in determination of conflict pairs, i.e. $W_{2}(B)$ will not be checked with $R_{3}(B)$.

not allowed)
f hence T_{3} is
\& hence. T_{3} is rollbacks
(c)

$T_{3} \rightarrow T_{2}$ (not allowed)
whence T_{2} is rollback.

(d)	T_{1}	T_{2}
$* \sigma_{1}(A)$	T_{3}	
$*_{2}(C)$	$\theta_{1}(B)$	$r_{3}(B)$

$$
T_{3} \rightarrow T_{1} \rightarrow T_{2}
$$

allowed precedence

$$
\begin{aligned}
& T_{3} \rightarrow T_{1} \\
& T_{3} \rightarrow T_{2} \\
& T_{1} \rightarrow T_{2}
\end{aligned}
$$

gives $\mathrm{T}_{2} \rightarrow \mathrm{~T}_{3}$ (not allowed) thence T_{3} is poll back .
\qquad
$\frac{\text { Thomas Write Timestamp Ordering :- }}{10} 20$

10	20
T_{1}	T_{2}
$R_{1}(A)$	$H_{2}(A)$

T_{1}	T_{2}	T_{1}	T_{2}
	$R_{2}(A)$		$W_{2}(A)$
$H_{j}(A)$	$\left(\omega_{1}(A)\right.$		

Rollback (1) Rollback (1) ignore $W_{1}(A)_{4}$
continue the
execution of $T_{1,}$
"Younger Transaction
should update dataitem finally": (3)
(1) Read Issue (T):-

$$
\overline{W T S}(A)>T S(T)
$$

Rollback T.
(2) Write issues (T):-

RTS(A) >T SCT) Rollback (Q)
$W T S(A)>T S(T)$ Ignore (ASA) operation by transaction of continue the execution.

Using: AA 10
BTS:-A 10
ordering $R T S(A)>T S(T)$
Ralback T_{1} because of $W_{1}(A)$:
Using
Three: - No rollbacks, allowed to execute schedule
as axing Equal Serial Schedule: $T_{1} \rightarrow T_{2} \rightarrow T_{3}$

* If schedule is View Serializable schedule 4 view equivalent serial schedule is based on Time Ordering, then TWR Timestamp Ordering protocol allow to execute the schedule.
$\frac{\text { BTS Ordering t TWR TS Ordering :- }}{1020} \frac{3040}{30}$

- Deadlock free protocolS)
- Starvation Possible.
- Not free from ingecoverability.

Allowed to execute By BTS Or cering \&
TAR IS Ordering
but is irrecoverable schedule.

Strict Timestamp Ordering:-
concurrent schedule should be equivalent to Serial based on TS Ordering f
If transaction T_{i} updates dataitem (A ', other transaction T_{j} not allowed, $2 \mathrm{R}(A) / W(A)$ until C / R of T_{i}
t strict recoverable
\rightarrow Deadlock free
\rightarrow Starvation still possible.
\qquad

Deadlock Prevention Algorithm:-

- Preventing deadlocks in locking protocals using the timestamp Ordering.

$\frac{T_{1}}{S(A)}$	T_{2}	
\vdots	$\times(A)$	Dependence Graph:-
$\left(T_{1}\right)-\left(T_{2}\right)$	T_{2} required resource	
he dd by T_{1}.		

Wait-Die protocol:-
(1) T_{i} \& T_{j} are any transaction in schedule such that $T S\left(T_{i}\right)<T S\left(T_{j}\right)$
A(2) If If Transaction Ti required resource held by I_{j}, then T_{i} is allowed to bo dit.

(ii) If transaction T_{j} required resource field by T_{i}, then rollback T_{j}.

Wound Wait Protocol:-
(1) $\left.T_{S}\left(T_{i}\right)<T_{S(T j}\right)$
(2) (1) If Transaction T_{i} required resource held by T_{j}; then rollback T_{j}.
(Ii) (D) by rollbacking T_{j}, the resources old young held by it becomes available
(ii) If transaction $T_{j_{2}}$ is equireds resource held by T_{i}, then T_{j} is allowed to wait.

$$
\begin{aligned}
& T_{i} \leftarrow T_{j} \\
& \text { old }
\end{aligned}
$$

4. hence starvation still possible,
but if we are able to start T_{2} with same Is value, then starvation is not, possible.

A (iii) So restart Ti j with same time Stamp (TS) value.
\qquad
Tuple Relational Calculus:- [TRC]

- Non-procedural Query Language :-
(1) first order logic (Predicate Calculus)

$$
\epsilon, \vee, \wedge, 7, \rightarrow, \exists, \forall, \text { etc. }
$$

IRC:-
Atomic formula:-
TERelation $\begin{gathered}\text { Tuple variable } T \text { should belongs to } \\ \text { relation? }\end{gathered}$
Tmeans relation\}
row of
relation.
eg $\left\{\forall_{x}(x \in\right.$ Stud $\wedge x$ Marks $\left.>20)\right\}$
T. A op canst. comparing with a constant.
attribute T.A OP S.B
A of a
tub le
tuple.

* $\exists R(P(R)) \quad R$ Tuple variable
$P(R)$: formula over tuple variable.
eg $\exists S \in$ Student (S .Marks 780)
Returns true only if at least one student scored greater than 80 marks (If there is no tuple in the relation, then Is returns false.)
f $\quad \forall S \in$ Student (S .Marks >80) returns true only if all relarestudent scores greater than 80 marks. returns false if there is at least one student who scored ≤ 80.
(if tuple set is empty, then \forall retards true).

Format of TRC:-
\{T/P(t)\} ~ T : ~ t u p l e ~ v a r i a t e ~
$P(t)$: formula over tuple variable T.

- results Tuples T suras that that satisfies $P(t)$ condition.
$T 4$ Select AGAZP
$P(t) 4=\begin{aligned} & \text { From } R \\ & \text { where } D\end{aligned}$
O/P tuple variable (Tuple Variable used before "") should be free tuple variables.
Q. Suppliers (sid, snare, rating) parts (bid, prame, colour)
catalog(sid, sid cost)
\rightarrow Retrieve suppliers whose rating >10.

$$
\sigma_{\text {rating rio }} \text { (suppliers) }
$$

$\{5 /$ SE suppliers $($ s.rating $>10)\}$
\qquad
$\{T \mid 3 S \in$ Suppliers (S.rating $>10 \wedge T \cdot$ sid $=S$. sid $\wedge T$ name Busing S. shame) ${ }^{\text {a }}$

1-Retrieve sid of the suppliers who supply some red part.

Q retrieve sid of suppliers who supply some red or some green part.
$\{I \mid \exists C \in$ Catalog $\exists P E$ parts (C. pid $=$ p.pid Λ
(p.colour:RED)
p- Cotour-Green)

$$
\wedge T \text {.sid }=\text { (.sid) }\}
$$

\rightarrow sid of the suppliers who supply sames red f some green part.
[13
(parts)
$\{T \mid \exists C \in$ Catalog $\exists P 1$ EPorts (
C1. pid $=p 1 \cdot$ pid \wedge p1. colour $=$ RED \wedge

- $\exists C 2 \in C a t a \circ g-7 P 2 \in$ parts C

C2 pid bz pid \wedge P2. colour = Green \wedge
(1. $\operatorname{sid} d=(2$. sid) \wedge
$T \cdot \operatorname{sid}^{2} d=(1 \cdot$ sid $\left.)\right\}$

Or
$\{T \mid \exists C 1 \in$ catalog $\exists P 1 \in$ Parts $\exists C 2 \in$ Catalog $\exists P 2 \in$ parts

$$
\begin{aligned}
& \text { - ((c1.pid = b1. pid } \wedge \text { p1.colour=RED }) \wedge \\
& \text { (C2. pid }=p 2 \text {. pid } \wedge \text { P2. colour }=\text { Green }) \wedge \\
& (\text { cl.sid }=(2 \text {.sid }) \wedge(\text { T.sid }=\text { (l.sid })\}
\end{aligned}
$$

\qquad
\qquad
\rightarrow Retrieve sid of suppliers. who supply at least two parts. π i. sid $\left(\sigma_{\substack{\text { c.sid } \\ c 2 \text { sid }}}\right.$ (catalog \times catalog $\left.)\right)$
cl. Rid $=$
C2. Fid
$\{T \mid \exists C l \in$ Catalog $\exists C 2 \in$ Catalog (cl. sid =cz .sid Λ
cl. id $\neq(2 \cdot$ sid \wedge T. sid $=$ Cl. sid $)\}$
\rightarrow Retrieve sid of the supplier who supplied every part

$$
\pi_{\text {sid, pod }} \text { (catalog) } \pi_{\text {pid }} \text { (parts) }=
$$

$\pi_{\text {sid }}($ catalog $)-\pi_{\text {sid }}\left(\pi_{\text {sid }}(\right.$ catalog $) \times$ parts - catalog $)$
Select C1. sid from catalog C1 where NOT EXISTS (Select Did from Parts. P where NOT EXISTS (Select C2.s'd from catalog C2 where c2.pid $=$ p. bid and (2 .gid $=(1$. sid))
Or
Select C1. Sid from Catalog where NOT Exists C Select Pigs from parts $] \rightarrow$ gives au l part id's Select Except 2 , id from catalog 02] gives parts which $\begin{aligned} & \rightarrow \text { are supplied by } \\ \text { hinere } C_{2} \text { sid }=\text { cl. sid) } & \text { Cl. Sid supplier }\end{aligned}$

- Except gives the difference

Cif Cl. Sid supplier supplied all parts, except returns empty set \& NOT -exists for that supplier returns true).
$\{T \mid \exists C 1 \in$ Catalog $\forall P \in P$ arts ($\exists C 2$ C Catalog

$$
\begin{aligned}
(\text { Cl. sid } & =(2 \cdot \text { sid } \wedge \text { p.pid }=(2 \cdot \text { pid }) \wedge \\
T \cdot \text { sid } & =(1 \cdot \text { sid })\}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\text { Safe TRCQucries } \\
\text { expressive power }
\end{array}\right\} \equiv\left\{\begin{array}{l}
\text { Basic RA } \\
\text { Expressive power }
\end{array}\right\}
$$

but
$\xrightarrow{\rightarrow} \rightarrow$ Aggregation
\rightarrow grouping
\rightarrow Outer $\operatorname{join}(N, M, N)$
Queries not poosibic in Basic RA, not even possible in safe TRC:

Indexing Q Physical DB Design:$D B$ file divided into blocks.

Block divided into records:-
$\left.\begin{array}{l}R_{1} \\ R_{2} \\ R_{3} \\ \hline\end{array}\right\} \rightarrow$ Block

Fixed Length Record

$$
\begin{aligned}
& \{S \mid 7 \text { SESuppliers }\} \equiv \text { \{S|s \& supplier }\} \\
& \text { ressuts in finite tables } \\
& \text { in infericusery of it rupies.) }
\end{aligned}
$$

\qquad
Base. Block

Address)

$$
\text { Eth record of block Base }+
$$

Variable Length Record

* Header may be required in fixed length records, egg. address of next block is saved in the block-hean
C.g. Block Size: :-1250 bytes
block header size:- 250 by les
Record sice:-200 bytes
Block factor wo of records/block
+ $\frac{\text { block sice-block header size. }}{\text { record sire }}$
* Data transfer rate from secondary memory to main memory is block by block.

Reces (15) (ain be stored in block:
(1) Spantred Organisation
(2) Inspanned Organisation
records can be
allowed to be
stored in two blocks
eg. Block size 100 B
Record size 40 B

Spanned Organisation results in more I/O Cost, because for accessing $R 3$, so we need to transfer both $B 1 \& B 2$.

Unspanned Organisation
Complete record should be stared in one block.

\rightarrow Internal fragmentaiton possible.

- Less Ilo cost.
* For fixed length recordsyumsparmed organ
* For variable"
spared organ
spanned or
Q. Assume inspanned blocking \& 100 B . blocks, file consist repgods of $20,50,35,70,40,20$ loytes, what \% of spare will be wasted?
Ans.

Emp $D B$ file
Enc

1	1	B
5	3	B
5	2	$B 2$
10	9	$B 3$
1	6	$B 4$

select from ethoute weer Eng =x.

Search key:- field used to access data from DB file.
Ordered File:-
Records physically or cered based, on search key Unordered File:-
not physically ordered based on search key.
I/O cost:- \# of blocks required to transfer from SM to MM to acess somedata.

* Worst case I/O cost . $\left\lceil\log _{2} N\right\rceil$ blocks
(for ordered file) N :- no of blocks of DB file.
Worst case $I / 0$ cost
(for unordered file)
Indexing (reduce I/O Cost)
Index file B, $\{10$ pointy size of DB block
Search k
Search key

三 Size of In lex block

Entry In Index file <search key, pointer>
Entry size of Index file = size of search key t size of pointer
size of index entry <size of $D B$ record.
A Block factor of Index \gg Block factor of block DB file.
A no. of index blocks \lll no. of $D B$ blocks (N)

Categories of Index:
(1) Dense Index:-

For every DB records, there should be corresponding entry in index file.
1:1 mapping blew index entries \& DB records. no. of entries in mex files =
no. of $D B$ records.
(2) Sparse Index:-

For set of $D B$ records, there exist one entry in the index file.

Sparse Index.
1:M mapping b/h Index entries \& DB records.

- no. of inder entries <no of $D B$. records
- na of Index entries = no. of DB blocks.
Q. Block sire 1000 B

$$
\text { \& record } \text { since }=100 B
$$

Key size $=12 \mathrm{~B}$
pointer $=8 B$
no. of $D B$ records $=10,000$
(1) How many no. of dense index blocks req.

Ans. $10000 \times(12+8)=200,000 \mathrm{~B}$

$$
\text { no. of blocks }=\frac{20,000}{1000}=200 \mathrm{blocks}
$$

(2) How many no. of sparse index blocks req.

Ans. No. of blocks req. f0,0 $10,000 \mathrm{DB}$ records = $\frac{10^{6}}{10^{3}}=1000$ entries block
no l of
1000 entries
$1000 \times 20 \mathrm{~F}=20000 \mathrm{~B}$
no: of blocks $=\frac{20,000}{1000}=20$ blocks.

Types of Index

1. Primary Index:- (default index)

Conditions:-
(1) Ordered file (and)
(2) Search key should be primary key or alternative key.

Primary Index can be dense or sparse.

1. $D B$ is ordered $a C C$ to the search key.
2. Search key should be poimary or alternative key.

* Almost 1 primary index is possible.

2. Clustering Index:-

Conditions:-
(1) Ordered file $4 \cdot$ i
(2) Search key is non-1key

Block Anchor
\qquad linter pointing
to next block)
employees from deft. 2 Started from B1, ; pointer of do $=2$ is pointing to $B 1$.

- Similarly employees from dept 5 started from B3, \therefore pointer for d no $=5$ is pointing to B3.
*. The block anchors are used when we want to access employees of $\mathrm{d}_{\mathrm{no}}=2$
* Clustered Index is always sparse index.
* Almost 1 clustering index is possible. (because either clustering index

Secondary Index:-
Conditions:-
(1) Unordered file.
(2) Search key can be key or Non-key.

* Secondary index is always dense index C because file is unordered.
* More than one secondary index is possible.
\qquad
(4) Multilevel Index:-

I/0 Cost $=($ no. of level s ti) blocks
Dynamic Multilevel Indexing

- B-Trees $\left.\begin{array}{l}\mathrm{B}^{+} \text {-Tree Indexing }\end{array}\right\} \begin{aligned} & \text { Balanced } \\ & \text { search } \\ & \text { Inderingee }\end{aligned}$

1. Record pointer:-
pointer which points to data base.
2. (value painter on data pointer).
3. Block pointer:-
pointer points to index block. (node pointer or tree pointer).

Worst Case I/O cost:
Using B-Tree index
$O\left(\log _{p} n\right)$
n :- no. of keys (in the complete tree structure) P:-no. of blockpointer per node.
(in previous example, $p=3$).

* Not suitable for sequential accessing of all records (because each access he need to start from the root every time)
B^{+}trees: $\boldsymbol{H}^{2} \mathrm{H}_{4}^{4}$ no record pointer in

\rightarrow Every key should be at the leaf level
\rightarrow Everyleaf node points to the next leaf node
B-Tree:
Order P : max. no. of Block pointer in B-Tree node.
(1) Internal node structure:-
P block p fr:

$A_{B_{1}\left|\underline{K_{1} R 1}\right|}\left|B_{2}\right| K_{2} R_{2} B_{3}|\cdots| B_{1}, R_{2},\left|B_{P}\right|$
(2) Structure of. leaf node:-

(3) Every internal node except root should contain be atteast. [P/2] block pointers should cont
block pointers.
$P=15$ (max 15 block plo.).

(2 block pos to Pblock ives)
($\lceil\mathrm{P} / 2\rceil$ black pta to $\max . P B_{p}$)
(4) Root can are atleast 2 block pointers \& max. " P block pointers
(5) Every'leaf node should be ot same levels keys within the nodes should be in ascending order.
B^{+}tree defoe.:-
(1) Internal node structure

$$
\left[\begin{array}{l}
\text { P: -block pointers } \\
(-1)=\text { keys }(n o \text { of }
\end{array}\right.
$$

(2)

(2) Structure of leaf node
pointer.
A B Tree order P: max no. of block pointers per node.

$$
\left.\left.\vdots \quad 2 *\left|\frac{p}{2}\right|^{h-1} \quad 2 * \right\rvert\, \frac{p}{2}\right]^{h} \quad 2 *\left[\frac{p}{2}\right]^{h-1} *\left(\left.\frac{p}{2} \right\rvert\,-1\right)
$$

- So, min no of keys in B -Tree with order p\&

$$
\begin{aligned}
& \text { height } h:- \\
& \left.1+2 *\left[\frac{p}{2}\right]^{-1}\right)\left[1+\left[\frac{p}{2}\right]+\left[\frac{p}{2}\right]^{2}+\ldots+\left[\frac{p}{2}\right]^{h-1}\right] \\
& =1+2 *\left(\left[\frac{p}{2}\right]-1\right)\left[\frac{\left.1\left(\frac{p}{2}\right]^{h}-1\right)}{\left[\frac{p}{2}\right]-1}\right) \\
& \left.=1+2 *\left(\left[\frac{p}{2}\right]^{h}-1\right)\right]
\end{aligned}
$$

- Min. no of keys in B-Pree with order p \& level ℓ :-

$$
\left|1+2 *\left(\left|\frac{p}{2}\right|^{l-1}\right)\right|
$$

- $\operatorname{Min}_{\text {height }} h$:- of nodes in B-Tree with order $p \&$ height n :-

$$
\begin{aligned}
& 1+2+2 *\left\lceil\frac{p}{2}\right]+2 *\left[\frac{p}{2}\right]^{2}+\ldots+2 *\left[\frac{p}{2}\right]^{h-1} \\
= & 1+2\left(1+\left\lceil\frac{p}{2}\right]+\ldots+\left[\frac{p}{2}\right]^{h-1}\right) \\
& \left.1+2 *\left(\frac{1\left(\left[\frac{p}{2}\right]^{h}-1\right)}{\left.\left(\left\lvert\, \frac{p}{2}\right.\right]^{-1}\right)}\right)\right]=1+2 *\left(\frac{p+1}{}+\frac{\left.(p / 2]^{l-1}-1\right)}{([p / 2]-1)}\right)
\end{aligned}
$$

\qquad

- Max. no. of keys in B-Tree with prater P \& height h

$$
\begin{align*}
& (p-1)+p \times(p-1)+p^{2} \times(p-1)+\cdots \cdot+p^{n} \times(p-1) \\
= & (p-1)\left[1+p+p^{2}+\cdots+p^{n}\right] \\
= & (p-1)[p 1(p h-1)] \\
= & p^{h+1}-1 \tag{0}
\end{align*}
$$

Mar. no. of rock Saint nodes in B-Tree:-

$$
1+p+p^{2}+\ldots+b=\frac{1\left(p^{n+1}-1\right)}{(p-1)}
$$

- Height of B-Tree with order $P \& N$ Keys.

$$
\begin{aligned}
& \left.N \subset A^{A}=2\left[\frac{p}{2}\right]^{n}-1\right\} \\
& \Rightarrow \frac{(x-1)}{2}+1=\left[\frac{p_{1}}{2}\right]^{h}
\end{aligned}
$$

$$
\begin{aligned}
& N=p^{n+1}-1 \text { (Each node Consists max. } \\
& h=\log _{p}(N+1)-1 \quad \text {, min. height. }
\end{aligned}
$$

* If node occupancy is min, then no. of nodes are max., if node occupancy is max. no. of nodes become-
Q. Identify min \& max. keys \& nodes in B-Tree with order $p=5$ \&'level $l=4$.
Ans. Min.
Level nodes keys block pointers

1	1	1	2
2	2	$2 * 2=4$	$2 * 3$
3	6	$6 * 2=12$	$6 * 3$
4	18	$18 * 2 * 36$	$18 * 3$

\min no: of. keys $=53$
\min no. of rides $=27$
Max.

Level modes block pointers	keys		
1 2	1	5	4
2	5	$5 \times 5=25$	$5 \times 4=20$
3	25	$25 \times 5=125$	$25 \times 4=100$
4	125	125×54	$125 \times 4=500$

max. no. of keys $=624$
max. no. of nodes $=156$
A B Tree order P: max: no. of key's in B Tree Nodes Cmeans $p=$ the max. no. of keys that can be stored in a node.)
max. no. of treys \& order nodes in B-Tree
with order $k=5$ \& lever 4

Level mar no. max. no	max no.		
of nodes of BD	of keys		
1	1	6	5
2	6	6^{2}	6×5
3	6^{2}	6^{3}	$6^{2} \times 5$
4	6^{3}	6^{4}	$6^{3} \times 5$

\qquad
order P is defined as b / w P\& $2 P$ keys (for integral
node) br 2 \& $2 P$ Keys Cor root
using above order identify min., max. no. Of toys \& nodes in B-Tree with order 4 \& level 4 . min.

level ta nodes block pointers key s			
1	1	2	1
2	2	$2 \times(P+1)=10$	$2 \times P=8$
3	$2 \times(P+1)-10$	$10 \times 5=50$	$2 \times(P+1) \times P-40$
4	50	$50 \times 5=250$	$50 \times 4=200$

$$
\text { no. of nodes }=63
$$

$$
\text { no of keys }=249
$$

max. level nodes block pointers 1 1 9	keys		
2	9	8	$9 \times 9=81$
3	81	$9 \times 8=72$	
4	729	729×9	$81 \times 8=648$
		$729 \times 8=$	

